Answer:
Sn + 2H2O ==> Sn(OH)2 + 2H2
67.3 g Sn x 1 mol/119 g x 2 mol H2/mol Sn x 22.4 L/mole = answer in liters
Explanation:
Sn + 2H2O ==> Sn(OH)2 + 2H2
67.3 g Sn x 1 mol/119 g x 2 mol H2/mol Sn x 22.4 L/mole = answer in liters
Answer:
0.297 mol/L
Explanation:
<em>A chemist prepares a solution of potassium dichromate by measuring out 13.1 g of potassium dichromate into a 150 mL volumetric flask and filling the flask to the mark with water. Calculate the concentration in mol/L of the chemist's potassium dichromate solution. Be sure your answer has the correct number of significant digits.</em>
<em />
Step 1: Calculate the moles corresponding to 13.1 g of potassium dichromate
The molar mass of potassium dichromate is 294.19 g/mol.
13.1 g × (1 mol/294.19 g) = 0.0445 mol
Step 2: Convert the volume of solution to L
We will use the relationship 1 L = 1000 mL.
150 mL × (1 L/1000 mL) = 0.150 L
Step 3: Calculate the concentration of the solution in mol/L
C = 0.0445 mol/0.150 L = 0.297 mol/L
Answer:
The most common example is the molar volume of a gas at STP (Standard Temperature and Pressure), which is equal to 22.4 L for 1 mole of any ideal gas at a temperature equal to 273.15 K and a pressure equal to 1.00 atm.If an ideal gas at a constant temperature is initially at a pressure of 3.8 atm and is then allowed to expand to a volume of 5.6 L and a pressure of 2.1 - 18914… ... of 5.6 L and a pressure of 2.1 atm, what is the initial volume of the gas? ... An ideal gas is at a pressure of 1.4 atm and has a volume of 3 L.
Explanation:
I hope I help :)
Given :
A 250 ml beaker weighs 13.473 g .
The same beaker plus 2.2 ml of water weighs 15.346 g.
To Find :
How much does the 2.2 ml of water, alone, weigh .
Solution :
Now, mass of water is given by :

Therefore , mass of 2.2 ml of water alone is 1.873 g .
Hence , this is the required solution .