Answer and Explanation:
The coefficient of determination also called "goodness of fit" or R-squared(R²) is used in statistical measurements to understand the relationship between two variables such that changes in one variable affects the other. The level of relationship or the degree to which one affects the other is measured by 0 to 1 whereby 0 means no relationship at all and 1 means one totally affects the other while figures in between such 0.40 would mean one variable affects 40% of the other variable.
In making a decision as an engineer while using the coefficient of determination, one would try to understand the relationship between variables under consideration and make decisions based on figures obtained from calculating coefficient of determination. In other words when there is a 0 coefficient then there is no relationship between variables and an engineer would make his decisions with this in mind and vice versa.
Answer:
A good design for a portable device to mix paint minimizing the shaking forces and vibrations while still effectively mixing the paint. Is:
The best design is one with centripetal movement. Instead of vertical or horizontal movement. With a container and system of holding structures made of materials that could absorb the vibration effectively.
Explanation:
First of all centripetal movement would be friendlier to our objective as it would not shake the can or the machine itself with disruptive vibrations. Also, we would have to use materials with a good grade of force absorption to eradicate the transmission of the movement to the rest of the structure. Allowing the reduction of the shaking forces while maintaining it effective in the process of mixing.
Answer:
A selective surface with large absorption for solar radiation and high reflectance for thermal infrared radiation was produced by use of surface oxidation of stainless steel. The surfaces were studied for use with concentrated light in a solar power plant at temperatures of 400°C and higher.
In order to investigate the relation between surface treatment and optical properties, stainless steels (AISI 304 and 430) which were submitted to different chemical and mechanical surface treatments, were used. To increase the spectral selectivity, these surfaces were treated in air and in vacuum at different temperatures and times. The optical properties of these films were investigated. Visual and infrared spectral absorptances were measured at room temperature. The thermal hemispherical emittance and absorptance were obtained by a calorimetric method at 200°C. It was noticed that these chemically and mechanically treated stainless steel surfaces have good spectral properties without further oxidations. This is very important for high temperature uses. The best values are found for samples 7 and 8 under vacuum and air. These two samples with mechanically ground surfaces retained their selectivity and specularity after several hours oxidation. One can conclude that the surface ground treatment confers good selectivity on the steel surfaces for use in concentrating solar collectors with a working temperature of 500°C.
Sample surfaces were subjected to long temperature ageing tests in order to gain some idea of the thermal stability of the surfaces. The results promise better-performing surface and the production of durable selective finishes at, possibly, lower cost than competing processes.
Explanation:
Explanation:
Note: Refer the diagram below
Obtaining data from property tables
State 1:

State 2:

State 3:

State 4:
Throttling process 
(a)
Magnitude of compressor power input


(b)
Refrigerator capacity



(c)
Cop:

