1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nastasia [14]
3 years ago
8

A tank with a volume of 8 m3 containing 4 m3 of 20% (by volume) NaOH solution is to be purged by adding pure water at a rate of

3 m3/h. The solution leaves the tank at a rate of 2 m3/h. When the tank is full, the solution leave the tank at the same inlet flow of 3 m3/h. Assume perfect mixing. Specific gravity of pure NaOH is 1.22. Determine the time necessary to purge 95% of the NaOH by mass from the tank.
Engineering
1 answer:
lawyer [7]3 years ago
4 0

Answer:

The time necessary to purge 95% of the NaOH is 0.38 h

Explanation:

Given:

vfpure water(i) = 3 m³/h

vNaOH = 4 m³

xNaOH = 0.2

vfpure water(f) = 2 m³/h

pwater = 1000 kg/m³

pNaOH = 1220 kg/m³

The mass flow rate of the water is = 3 * 1000 = 3000 kg/h

The mass of NaOH in the solution is = 0.2 * 4 * 1220 = 976 kg

When the 95% of the NaOH is purged, thus the NaOH in outlet is = 0.95 * 976 = 927.2 kg

The volume of NaOH in outlet after time is = 927.2/1220 = 0.76 m³

The time required to purge the 95% of the NaOH is = 0.76/2 = 0.38 h

You might be interested in
A saturated 1.5 ft3 clay sample has a natural water content of 25%, shrinkage limit (SL) of 12% and a specific gravity (GS) of 2
Svetllana [295]

79 f t^{3} is the volume of the sample when the water content is 10%.

<u>Explanation:</u>

Given Data:

V_{1}=100\ \mathrm{ft}^{3}

First has a natural water content of 25% = \frac{25}{100} = 0.25

Shrinkage limit, w_{1}=12 \%=\frac{12}{100}=0.12

G_{s}=2.70

We need to determine the volume of the sample when the water content is 10% (0.10). As we know,

V \propto[1+e]

\frac{V_{2}}{V_{1}}=\frac{1+e_{2}}{1+e_{1}}  ------> eq 1

e_{1}=\frac{w_{1} \times G_{s}}{S_{r}}

The above equation is at S_{r}=1,

e_{1}=w_{1} \times G_{s}

Applying the given values, we get

e_{1}=0.25 \times 2.70=0.675

Shrinkage limit is lowest water content

e_{2}=w_{2} \times G_{s}

Applying the given values, we get

e_{2}=0.12 \times 2.70=0.324

Applying the found values in eq 1, we get

\frac{V_{2}}{100}=\frac{1+0.324}{1+0.675}=\frac{1.324}{1.675}=0.7904

V_{2}=0.7904 \times 100=79\ \mathrm{ft}^{3}

7 0
3 years ago
Air enters a turbine with a stagnation pressure of 900 kPa and a stagnation temperature of 658K, and it is expanded to a stagnat
bezimeni [28]

Answer:

12.332 KW

The positive sign indicates work done by the system ( Turbine )

Explanation:

Stagnation pressure( P1 ) = 900 kPa

Stagnation temperature ( T1 ) = 658K

Expanded stagnation pressure ( P2 ) = 100 kPa

Expansion process is  Isentropic, also assume steady state condition

mass flow rate ( m ) = 0.04 kg/s

<u>Calculate the Turbine power </u>

Assuming a steady state condition

( p1 / p2 )^(r-1/r)  = ( T1 / T2 )

= (900 / 100)^(1.4-1/1.4) = ( 658 / T2 )

=  ( 9 )^0.285 = 658 / T2

∴ T2 = 351.22 K

Finally Turbine Power / power developed can be calculated as

Wt = mCp ( T1 - T2 )

    = 0.04 * 1.005 ( 658 - 351.22 )

    = 12.332 KW

The positive sign indicates work done by the system ( Turbine )

6 0
3 years ago
Driving Distraction Brainstorming Session
Leto [7]

texting, phone calls, putting on makeup, brushing hair, movies playing in car, loud music, children, and that's pretty much all I could think of

please give <u>BRAINLIEST ANSWER └[T‸T]┘</u>

5 0
3 years ago
During a medical evaluation, the doctor can __________.
Elan Coil [88]

Answer:

Treat the patient

i hope this is ur answer

8 0
3 years ago
g Let the charges start infinitely far away and infinitely far apart. They are placed at (6 cm, 0) and (0, 3 cm), respectively,
irina1246 [14]

Answer:

a) V =10¹¹*(1.5q₁ + 3q₂)

b) U = 1.34*10¹¹q₁q₂

Explanation:

Given

x₁ = 6 cm

y₁ = 0 cm

x₂ = 0 cm

y₂ = 3 cm

q₁ = unknown value in Coulomb

q₂ = unknown value in Coulomb

A) V₁ = Kq₁/r₁

where   r₁ = √((6-0)²+(0-0)²)cm = 6 cm = 0.06 m

V₁ = 9*10⁹q₁/(0.06) = 1.5*10¹¹q₁

V₂ = Kq₂/r₂

where   r₂ = √((0-0)²+(3-0)²)cm = 3 cm = 0.03 m

V₂ = 9*10⁹q₂/(0.03) = 3*10¹¹q₂

The electric potential due to the two charges at the origin is

V = ∑Vi = V₁ + V₂ = 1.5*10¹¹q₁ + 3*10¹¹q₂ = 10¹¹*(1.5q₁ + 3q₂)

B) The electric potential energy associated with the system, relative to their infinite initial positions, can be obtained as follows

U = Kq₁q₂/r₁₂

where

r₁₂ = √((0-6)²+(3-0)²)cm = √45 cm = 3√5 cm = (3√5/100) m

then

U = 9*10⁹q₁q₂/(3√5/100)

⇒ U = 1.34*10¹¹q₁q₂

5 0
3 years ago
Other questions:
  • What is EL Niño?
    9·1 answer
  • What are 3 reasons why small businesses are an important part of the American economy?
    9·2 answers
  • A motor vehicle has a mass of 1.8 tonnes and its wheelbase is 3 m. The centre of gravity of the vehicle is situated in the centr
    14·1 answer
  • Due at 11:59pm please help
    14·1 answer
  • This is a blueprint drawing of the stage area at Millennium Park. The length of one square on the grid is equal to 5 feet. Accor
    14·1 answer
  • Sketch the velocity profile for laminar and turbulent flow.
    15·1 answer
  • A cylinder with a piston restrained by a linear spring contains 2 kg of carbon dioxide at 500 kPa and 400°C. It is cooled to 40°
    7·1 answer
  • Consider a circuit element, with terminals a and b, that has vab= -12V and iab= 3A. Over a period of 2 seconds, how much charge
    8·1 answer
  • Policeman says, "Son, you can't stay here"
    9·1 answer
  • An ideal vapor-compression refrigeration cycle using refrigerant-134a as the working fluid is used to cool a brine solution to −
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!