First we should convert 14.4 km into meters using the conversion factor 1km = 1000m; thus, 14.4 km = 14,400 m. Next, we should convert all minutes into seconds <span>using the conversion factor 1 min = 60 seconds; thus, 40 mins = 2400 seconds while 20 minutes = 1200 seconds.
Speed = distance over time
Amy's speed = 14400 m / 2400 sec = 6m/s
Bill's time is 1200 sec + Amy's which is 2400 sec
Bill's speed = 14400m / 3600 sec = 4 m/s
Therefore, Amy is faster than Bill with 2 m/s difference.</span>
Answer:
Explanation:
A 40kg child throw stone of 0.5kg
At a direction of 5m/s
Recoil can be calculated using recoil of a gun formula
m_1•v_1 + m_2•v_2
m_1•v_1 = -m_2•v_2
The negative sign show that the momentum of the boy is directed oppositely to that of the stone
m_1 Is mass of boy
v_1 is the recoil velocity of the boy
m_2 is mass of stone
v_2 is the velocity of stone
Then,
m_1•v_1 = -m_2•v_2
40•v_1 = -0.5 × 5
40•v_1 = -2.5
v_1 = -2.5 / 40
v_1 = -0.0625 m/s
The recoil velocity of the boy is 0.0625 m/s
When it has a magnetic field
Answer:
F = 8.6 10⁻¹² N
Explanation:
For this exercise we use the law of conservation of energy
Initial. Field energy with the electron at rest
Em₀ = U = q ΔV
Final. Electron with velocity, just out of the electric field
Emf = K = ½ m v²
Em₀ = Emf
e ΔV = ½ m v²
v =√ 2 e ΔV / m
v = √(2 1.6 10⁻¹⁹ 51400 / 9.1 10⁻³¹)
v = √(1.8075 10¹⁶)
v = 1,344 10⁸ m / s
Now we can use the equation of the magnetic force
F = q v x B
Since the speed and the magnetic field are perpendicular the force that
F = e v B
F = 1.6 10⁻¹⁹ 1.344 10⁸ 0.4
For this exercise we use the law of conservation of energy
Initial. Field energy with the electron at rest
Emo = U = q DV
Final. Electron with velocity, just out of the electric field
Emf = K = ½ m v2
Emo = Emf
.e DV = ½ m v2
.v = RA 2 e DV / m
.v = RA (2 1.6 10-19 51400 / 9.1 10-31)
.v = RA (1.8075 10 16)
.v = 1,344 108 m / s
Now we can use the equation of the magnetic force
F = q v x B
Since the speed and the magnetic field are perpendicular the force that
F = e v B
F = 1.6 10-19 1,344 108 0.4
F = 8.6 10-12 N
There are some missing data in the text of the problem. I've found them online:
a) coefficient of friction dry steel piston - steel cilinder: 0.3
b) coefficient of friction with oil in between the surfaces: 0.03
Solution:
a) The force F applied by the person (300 N) must be at least equal to the frictional force, given by:

where

is the coefficient of friction, while N is the normal force. So we have:

since we know that F=300 N and

, we can find N, the magnitude of the normal force:

b) The problem is identical to that of the first part; however, this time the coefficienct of friction is

due to the presence of the oil. Therefore, we have: