On Earth, a cannonball with a mass of 20 kg would weigh 196 Newtons.
With the formula F=mg, where F is the weight in Newtons, m is the mass, and g is the acceleration due to gravity on the Earth which is 9.8m/s^2.
F=20kg x 9.8m/s^2= 196 Newtons
BUT on the moon, acceleration due to gravity is 1.6 m/s^2,
so F=mg=20kgx1.6m/s^2= 32 N
What’s the question here?
Catalytic ozone destruction occurs in the stratosphere where the reactions involving bromine, chlorine, hydrogen, nitrogen and oxygen gases form compounds that destroy the ozone layer. The reactions uses a catalyst (speeds up the reaction) in a two step reaction. considering chlorine the reactions appears as follows;
step 1
Cl + O3 = ClO + O2
step 2
ClO + O = Cl + O2
Where by chlorine is released to destroy the ozone layer, this takes place many times even with the other elements (hydrogen, bromine, nitrogen) and the end result is a completely destroyed Ozone layer
Answer:

Explanation:
A polarizer changes the orientation of the oscillations of a light wave.
I₀ = Intensity of unpolarized light = 10
θ = Angle given to the polarizer = 60°
Intensity of light
I = I₀cos²θ
⇒I = 10cos²60

So, the after passing through the second polarizer is 
When a star uses up all of it's energy and begins to die, it swells up to become a red giant star. This causes its surface gravity to decrease, thereby allowing some of its mass to escape into space.
A binary star is a pair of stars that orbit each other because of their gravitational attraction to each other. When one member of the binary pair uses up all of its energy and begins to die, it loses mass due to the reduction in surface gravity. But instead of escaping into space, this mass is attracted to the companion star because of its gravitational pull. That increases the mass of the companion star. In a process that takes thousands of years, enough matter is transfered that causes the temperature and pressure to increase sufficiently to result in nuclear fusion reactions on the companion star. When these nuclear reactions become extremely violent, the released nuclear energy increases the brightness of this companion star dramatically, thereby creating a nova.
Therefore, it is the dying of one of the stars in a binary system along with a sufficient transfer of star mass to sustain nuclear reactions that results in a nova.