Answer:
5. 9GmM/(10R)
Explanation:
m is the mass of the satellite
M is the mass of the earth
W is the energy required to launch the satellite
Energy at earth surface = Potential energy (PE) + W
W = Energy at earth surface - Potential energy (PE)
But PE =
Therefore: W = Energy at earth surface -
Energy at earth surface (E) at an altitude of 5R =
But
Therefore:
W = E - PE
m = Mass of the refrigerator to be moved to third floor = 136 kg
g = Acceleration due to gravity by earth on the refrigerator being moved = 9.8 m/s²
h = Height to which the refrigerator is moved = 8 m
W = Work done in lifting the object
Work done in lifting the object is same as the gravitational potential energy gained by the refrigerator. hence
Work done = Gravitation potential energy of refrigerator
W = m g h
inserting the values
W = (136) (9.8) (8)
W = 10662.4 J
Answer:
1050 kg
Explanation:
The formula for kinetic energy is:
KE (kinetic energy) = 1/2 × m × v² where <em>m</em> is the <em>mass in kg </em>and <em>v</em> is the velocity or <em>speed</em> of the object <em>in m/s</em>.
We can now substitute the values we know into this equation.
KE = 472 500 J and v = 30 m/s:
472 500 = 1/2 × m × 30²
Next, we can rearrange the equation to make m the subject and solve for m:
m = 472 500 ÷ (1/2 × 30²)
m = 472 500 ÷ 450
m = 1050 kg
Hope this helps!
The answer is C. You must divide your wavelength and your frequency to get your answer.
Answer:
Explanation:
Assuming the pith balls as point charges, we can calculate the repulsive force between them, using Coulomb's law:
We observe that the magnitude of the electric force is directly proportional to the product of the magnitude of both signed charges() and inversely proportional to the square of the distance(d) that separates them.
Replacing the given values, where k is the Coulomb constant: