Answer:
D. transparent.
Explanation:
A material that transmits nearly all the light in a ray because it offers little resistance to the light is <u>transparent.</u>
A transparent material allows light to pass through them with little or no resistance enabling them see-through. A material that transmits nearly all the light rays that pass through it because it offers little resistance to the light is TRANSPARENT. Examples of transparent materials are water, glass (flint and crown), air, and diamond.
Answer:
v = 44,16 m/s
Explanation:
We will fixate our reference in the starting point from where Dan jumped of, at the top of the Casino. Therefore, the displacement made when dan reached the airbag would be of y= -99,4 m viewed from our reference. We describe the motion of dan with the equation:
Dan jumped from the rest, that means that the initial velocity v_0=0, therefore:
Since Dan is moving in the negative axis regarding our reference point, we take the negative root of the equation.
v_y=-√(2*(-9,81 m/s^2 )*(-99,4 m) )=44,1613 m/s
So, if we don’t take the air resistance into account, Dan would have achieved an velocity of 44,16 m/s when he reached the airbag.
I hope everything was clear with my explanation. If you need anything else, let me know. Have a great day :D
Answer:
9.81 m/s² constant
Explanation:
Any object which is falling has only the acceleration due to gravity acting on it. The value of acceleration due to gravity is 9.81 m/s² which is constant. This is the case if air resistance is not taken into consideration.
The air resistance is a result of the surface area of the object which is falling. This will slow down the object and the velocity reached is called the terminal velocity.
Answer:
The correct answer is B: the kinetic energy of the heavier block is equal to the kinetic energy of the lighter block.
Explanation:
Hi there!
The work done on each block is calculated as follows:
W = F · d
Since the two blocks were pushed the same distance with the same force, the work done on each object is the same.
Using the work-energy theorem, we know that the work done on an object is equal to its change in kinetic energy (KE):
W = ΔKE
W = final KE - initial KE
Since the objects are at rest, initial KE = 0, then:
W = final KE
Since the work done on each block is the same, so will be its final kinetic energy.
The correct answer is B: the kinetic energy of the heavier block is equal to the kinetic energy of the lighter block.
The natural philosopher that is credited with discovering that density could be used to determine the nature of an object is Archimedes.
<h3>Density</h3>
The term density refers to the ratio of mass to volume of an object. The density of an object is an intrinsic property hence it can be used to determine the nature of an object.
Many natural philosophers made outstanding contributions to the early development of natural philosophy. The natural philosopher that is credited with discovering that density could be used to determine the nature of an object is Archimedes.
Learn more about density: brainly.com/question/952755