Answer:
The side the boy is sitting on will tilt downward.
Explanation:
According to the law of moments when the same force is applied at a greater distance from the pivot then the effect of moment is greater about that point.
<u>Mathematically momentum is given as:</u>

where:
F is the applied force at a distance 'r' acting in a direction perpendicular to the line joining the point of application and the hinge.
- Moment is the rotational effect of the applied force on the body.
<em>When the boy of a heavier mass than the girl was sitting on a balanced see-saw then it is certain that he was closer to the hinge than the girl to balance the turning effect (in case of an unbiased see-saw). When the body moves farther his weight is same but the radial distance from the hinge increases which increases his moment of weight.</em>
Answer:
Newton's Third Law of Motion
Explanation:
Newton's Third Law of Motion which states that, for every action there is an equal but opposite reaction.
This ultimately implies that, in every interaction, there is a pair of forces acting on the two interacting objects.
In this scenario, a ball bounced by a basketball player on the floor bounces back up at her.
According to Newton's Third Law of Motion, the statement above simply means that in every interaction, there is a pair of forces acting on the two interacting objects i.e the ball and floor. The size of the force on the ball equals the size of the force on the floor. These two forces are called action and reaction forces and are the subject of Newton's third law of motion.
Hence, the ball bounced by the basketball player on the floor would bounce back in equal magnitude.
Answer:
a) v_average = 11 m / s, b) t = 0.0627 s
, c) F = 7.37 10⁵ N
, d) F / W = 35.8
Explanation:
a) truck speed can be found with kinematics
v² = v₀² - 2 a x
The fine speed zeroes them
a = v₀² / 2x
a = 22²/2 0.69
a = 350.72 m / s²
The average speed is
v_average = (v + v₀) / 2
v_average = (22 + 0) / 2
v_average = 11 m / s
b) The average time
v = v₀ - a t
t = v₀ / a
t = 22 / 350.72
t = 0.0627 s
c) The force can be found with Newton's second law
F = m a
F = 2100 350.72
F = 7.37 10⁵ N
.d) the ratio of this force to weight
F / W = 7.37 10⁵ / (2100 9.8)
F / W = 35.8
.e) Several approaches will be made:
- the resistance of air and tires is neglected
- It is despised that the force is not constant in time
- Depreciation of materials deformation during the crash
Answer:
Time take to fill the standing wave to the entire length of the string is 1.3 sec.
Explanation:
Given :
The length of the one end
, frequency of the wave
= 2.3 Hz, wavelength of the wave λ = 1 m.
Standing wave is the example of the transverse wave, standing wave doesn't transfer energy in a medium.
We know,
∴
λ
Where
speed of the standing wave.
also, ∴ 
where
time take to fill entire length of the string.
Compare above both equation,
⇒
sec

Therefore, the time taken to fill entire length 0f the string is 1.3 sec.
Answer:
b) d = 0.71 Km
Explanation:
Car kinematics
Car 1 moves with uniformly accelerated movement
Formula (1)
d: displacement in meters (m)
v₀: initial speed in m/s
vf: final speed in m/s
a: acceleration in m/s²
Equivalences:
1mile = 1609.34 meters
1 hour = 3600s
1km = 1000m
Known data


a = -0.5 m/s²
Distance calculation
We replace data in the Formula (1)



