Answer:
W = 113.98 N
Explanation:
Given that,
Radius of Potatoine
Mass of Potatoine, 
Mass of Marvin, m = 35 kg
We need to find his weight on Potatoine. Weight of an object is given by :
W = mg
g is acceleration due to gravity, 
So,

So, his weight on Potatoine is 113.98 N.
Answer:
charge and distance
Explanation:
The electric force between the two particles are calculated using the formular:
F = kQ₁Q₂ / d²
where:
F = force.
k= Coulomb's law constant.
Q1 and Q2 are the charges.
d= distance.
the equation above is called Coulomb's law.
It can be seen from the equation above that the electric forces between the objects are majorly affected by the substance's charges and distance.
so the correct option is charge and distance.
Answer:
C. 10kg to 10kg
Explanation:
You have to picture to it I think
This depends on whether the pipe is closed or open ended.
The fundamental frequency of a pipe is the simplest, smallest portion of a wave that can fit into a pipe. At the open end of a pipe, there is always an antinode - an area with maximum air movement.
If it is an open ended pipe, there is an antinode at each end, meaning that the length of the pipe is equal to 1/2 <span>λ
</span>. Manipulating the formula <span><span>v=fλ</span>
</span> to solve for the fundamental frequency leaves us with <span><span>f=<span>v/<span>2L</span></span></span>
</span> in an open ended pipe.
Answer:
a) vB = 10.77 ft/s
b) W = 11.30 lb*ft
Explanation:
a) W = 8 lb ⇒ m = W/g = 8 lb/32.2 ft/s² = 0.2484 slug
vA <em>lin</em> = 5 ft/s
rA = 2 ft
v <em>rad</em> = 4 ft/s
vB = ?
rB = 1 ft
W = ?
We can apply The law of conservation of angular momentum
L<em>in</em> = L<em>fin</em>
m*vA*rA = m*vB*rB ⇒ vB = vA*rA / rB
⇒ vB = (5 ft/s)*(2 ft) / (1 ft) = 10 ft/s (tangential speed)
then we get
vB = √(vB tang² + vB rad²) ⇒ vB = √((10 ft/s)² + (4 ft/s)²)
⇒ vB = 10.77 ft/s
b) W = ΔK = K<em>B</em> - K<em>A</em> = 0.5*m*vB² - 0.5*m*vA²
⇒ W = 0.5*m*(vB² - vA²) = 0.5*0.2484 slug*((10.77 ft/s)²-(5 ft/s)²)
⇒ W = 11.30 lb*ft