Distance is the total length covered = 2m + 3m = 5m
Displacement is his distance from original position.
Displacement = 2m + (-3)m. Representing the 3m walked back as -3.
Displacement = 2m - 3m = -1m.
So his displacement is 1m behind his original starting point.
Answer:
During a total lunar eclipse, the moon and sun are on the exact opposite sides of the Earth, leaving the moon entirely in the Earth's shadow. During a partial lunar eclipse, only part of the moon is in the Earth's shadow.
Explanation:
Answer:
the time interval that an earth observer measures is 4 seconds
Explanation:
Given the data in the question;
speed of the spacecraft as it moves past the is 0.6 times the speed of light
we know that speed of light c = 3 × 10⁸ m/s
so speed of spacecraft v = 0.6 × c = 0.6c
time interval between ticks of the spacecraft clock Δt₀ = 3.2 seconds
Now, from time dilation;
t = Δt₀ / √( 1 - ( v² / c² ) )
t = Δt₀ / √( 1 - ( v/c )² )
we substitute
t = 3.2 / √( 1 - ( 0.6c / c )² )
t = 3.2 / √( 1 - ( 0.6 )² )
t = 3.2 / √( 1 - 0.36 )
t = 3.2 / √0.64
t = 3.2 / 0.8
t = 4 seconds
Therefore, the time interval that an earth observer measures is 4 seconds
B) The amount of work done
You are looking at yourself in a plane mirror, a distance of 3 meters from the mirror. your brain interprets what you are seeing in the mirror as being a person standing 6 meters from you.
<h3>Calculation</h3>
The plane mirror shows an exact replica of the real world. that means the distance of you from the mirror is the same distance as your reflection form the mirror at the opposite side of the mirror.
Thus, distance of image from the plane mirror is same as the distance of object (person) from the plane mirror but the image is formed behind the mirror.
Thereby we have v=u=3 m
Thus, distance between image and the person
is d = v + u = 3 + 3 = 6 m
Thus, the person is 6 meters away from the image.
To know more such mirror problems, visit:
brainly.com/question/14687229
#SPJ4