Answer:
μ = 0.37
Explanation:
For this exercise we must use the translational and rotational equilibrium equations.
We set our reference system at the highest point of the ladder where it touches the vertical wall. We assume that counterclockwise rotation is positive
let's write the rotational equilibrium
W₁ x/2 + W₂ x₂ - fr y = 0
where W₁ is the weight of the mass ladder m₁ = 30kg, W₂ is the weight of the man 700 N, let's use trigonometry to find the distances
cos 60 = x / L
where L is the length of the ladder
x = L cos 60
sin 60 = y / L
y = L sin60
the horizontal distance of man is
cos 60 = x2 / 7.0
x2 = 7 cos 60
we substitute
m₁ g L cos 60/2 + W₂ 7 cos 60 - fr L sin60 = 0
fr = (m1 g L cos 60/2 + W2 7 cos 60) / L sin 60
let's calculate
fr = (30 9.8 10 cos 60 2 + 700 7 cos 60) / (10 sin 60)
fr = (735 + 2450) / 8.66
fr = 367.78 N
the friction force has the expression
fr = μ N
write the translational equilibrium equation
N - W₁ -W₂ = 0
N = m₁ g + W₂
N = 30 9.8 + 700
N = 994 N
we clear the friction force from the eucacion
μ = fr / N
μ = 367.78 / 994
μ = 0.37
The molecules are continually colliding with each other and with the walls of the container. When a molecule collides with the wall, they exert<span> small force on the wall The </span>pressure exerted<span> by the </span>gas<span> is due to the sum of all these collision forces.The more particles that hit the walls, the higher the </span>pressure<span>.</span>
Answer:
Maximum distance of image from mirror is equal to focal length of the mirror
Explanation:
As we know by the equation of mirror we have

here we know for convex mirror
object position is always negative as it will be placed behind the mirror always
while the focal length of the convex mirror is always taken positive
So here we have


so here maximum value of image distance is equal to focal length of the mirror
What is Pluto is changing exactly <span />