1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
elena55 [62]
2 years ago
7

What does an element’s molar mass tell you about the element?

Physics
1 answer:
olga nikolaevna [1]2 years ago
7 0

Answer:

The molar mass of a compound tells you the mass of one mole of that substance. In other words, it tells you the number of grams per mole of a compound.

You might be interested in
A gray kangaroo can bound across level ground with each jump carrying it 8.7 from the takeoff point. Typically the kangaroo leav
oksano4ka [1.4K]

Answer:

a) The takeoff speed is 10 m/s.

b) The maximum height above the ground is 1.2 m.

Explanation:

The position of the kangaroo and its velocity at any given time "t" can be calculated by the following equations:

r = (x0 + v0 · t · cos α, y0 + v0 · t · sin α + 1/2 · g · t²)

v =(v0 · cos α, v0 · sin α + g · t)

Where:

r = position vector at time "t".

x0 = initial horizontal position.

v0 = initial velocity.

α = jumping angle.

y0 = initial vertical position.

g = acceleration due to gravity (-9.8 m/s² considering the upward direction as positive).

v = velocity vector at time "t"

a) Please see the attached figure for a better understanding of the problem. In red is depicted the position vector at the final time (r final). The components of r final are known:

r final = (8.7 m, 0 m)

Then at final time:

8.7 m = x0 + v0 · t · cos α

0 m = y0 + v0 · t · sin α + 1/2 · g · t²

(notice in the figure that the origin of the frame of reference is located at the jumping point so that x0 and y0 = 0). Then:

8.7 m = v0 · t · cos α

Solving for "v0":

8.7 m /(t · cos α) = v0

Replacing v0 in the equation of the y-component, we can obtain the final time:

0 m = 8.7 m · tan 29° - 1/2 · 9.8 m/s² · t² (remember: sin α / cos α = tan α)

- 8.7 m · tan 29° / -4.9 m/s² = t²

t = 0.99 s

Now, we can calculate the initial speed:

8.7 m /t · cos α = v0

v0 = 8.7 m / (0.99 s · cos 29°)

<u>v0 = 10 m/s</u>

The takeoff speed is 10 m/s

b) When the kangaroo is at its maximum height, the velocity vector is horizontal (see figure). That means that the y-component of the velocity at that time is 0:

0 = v0 · sin α + g · t

Solving for "t":

-v0 · sin α / g = t

t = - 10 m/s · sin 29° / 9.8 m/s²

t = 0.49 s

Notice that we could have halved the final time (0.99 s, calculated above) to obtain the time at which the kangaroo is at its maximum height. That´s because the trajectory is parabolic.

Now, let´s find the height of the kangaroo at that time:

y = y0 + v0 · t · sin α + 1/2 · g · t²

y = 10 m/s · 0.49 s · sin 29° - 1/2 · 9.8 m/s² · (0.49 s)²

<u>y = 1.2 m</u>

The maximum height above the ground is 1.2 m.

4 0
3 years ago
A 1700kg rhino charges at a speed of 50.0km/h. what average force is needed to bring the rhino to a stop in 0.50s?
uranmaximum [27]
From 50km/h to 0km/h in 0.5s we need next acceleration:
First we convert km/h in m/s:
50km/h = 50*1000/3600=13.8888 m/s
a = v/t = 13.88888/0.5 = 27.77777 m/s^2

Now we use Newton's law:

F=m*a

F=1700*27.7777 = 47222N
6 0
3 years ago
As temperature increases, ________. Group of answer choices the resistance of a conductor remains the same the resistance of a c
amm1812

Answer:

resistance of a conductor increases

Explanation:

The resistance of conductors is directly proportional to the temperature of the conductor. This implies that when the temperature of the conductor is increased, the resistance of the conductor increases likewise.

This is applied in the resistance thermometer. Resistance thermometers are useful for accurate temperature measurements at very high or very low temperatures.

6 0
3 years ago
Help me please please?
Rainbow [258]

Answer: I looked it up and it says something about the waves traveling in a solid but I don’t know if that’s correct.

4 0
3 years ago
Read 2 more answers
If earth increase the distance from the sun, what will happen to the period of orbi t(the time it takes to complete one revoluti
Mandarinka [93]

The period of the orbit would increase as well

Explanation:

We can answer this question by applying Kepler's third law, which states that:

"The square of the orbital period of a planet around the Sun is proportional to the cube of the semi-major axis of its orbit"

Mathematically,

\frac{T^2}{a^3}=const.

Where

T is the orbital period

a is the semi-major axis of the orbit

In this problem, the question asks what happens if the distance of the Earth from the Sun increases. Increasing this distance means increasing the semi-major axis of the orbit, a: but as we saw from the previous equation, the orbital period of the Earth is proportional to a, therefore as a increases, T increases as well.

Therefore, the period of the orbit would increase.

Learn more about Kepler's third law:

brainly.com/question/11168300

#LearnwithBrainly

5 0
3 years ago
Other questions:
  • you cover 10 meters in a time of 1 second .Is your speed the same if you cover 20 meters in 2 seconds?
    10·1 answer
  • The umbra during a SOLAR OR LUNAR eclipse is smaller than during a SOLAR OR LUNAR eclipse.
    12·1 answer
  • Please help with this problem ASAP!!!
    14·1 answer
  • Compared to gamma rays, X–rays have relatively
    14·2 answers
  • What is the magnitude of the electric field in a region where the potential is given by the expression V = ax2 + b where a = −50
    15·2 answers
  • Which of the following is NOT an example of environmental sustainability practices? Question 4 options: A. Waste management B. S
    7·1 answer
  • Question 3 (10 points)
    5·1 answer
  • If positive work is being done to an object...
    14·1 answer
  • A car enters the freeway with a speed of 6.4 m/s and accelerates uniformly for 3/2 km in 3.5 min. How fast (in m/s) is the car m
    15·1 answer
  • 1 5kg cat is lifted 2 m into the air.how much gpe does it gain?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!