Answer:
<u>The correct answer is 0.556 Watts</u>
Explanation:
The computer monitor uses 200 Watts of power in an hour, that is the standard measure.
If we want to know, how much energy the computer monitor uses in one second, we will have to divide both sides of the equation into 3,600.
1 hour = 60 minutes = 3,600 seconds (60 x 60)
Energy per second = 200/3600
Energy per second = 0.0556 Watts
Therefore to calculate how much energy is used in 10 seconds, we do this:
Energy per second x 10
<u>0.0556 x 10 = 0.556 Watts</u>
<u>The computer monitor uses 0.556 Watts in 10 seconds</u>
Answer:
0.775 m
Explanation:
As the car collides with the bumper, all the kinetic energy of the car (K) is converted into elastic potential energy of the bumper (U):
where we have
is the spring constant of the bumper
x is the maximum compression of the bumper
is the mass of the car
is the speed of the car
Solving for x, we find the maximum compression of the spring:
Answer:
2C
Explanation:
The equivalent capacitance of a parallel combination of capacitors is the sum of their capacitance.
So, if the capacitance of each capacitor is half the previous one, we have a geometric series with first term = C and rate = 0.5.
Using the formula for the sum of the infinite terms of a geometric series, we have:
Sum = First term / (1 - rate)
Sum = C / (1 - 0.5)
Sum = C / 0.5 = 2C
So the equivalent capacitance of this parallel connection is 2C.
Using K.E=1/2MV^2
answer is 125joules
Answer:
6495.19 Joule
Explanation:
F = Weight of the crate = 250 N
d = Distance the cart is pushed = 30 m
θ = Angle of inclination = 60°
The weight of the crate will be resloved into two components
Fdsinθ and Fdcosθ
Work done by the force of gravity is
W = Fdsinθ
⇒W = 250×30×sin60
⇒W = 6495.19 Joule
∴ The work done by the force of gravity is 6495.19 Joule