Answer:
9.81N
Explanation:
the force of attraction is given by
F=<u>GmM</u><u>/</u><u>R²</u><u> </u>
where m is mass of the body
M is mass of the earth
R is radius of the earth
G is the universal gravitational constant(6.67x10-¹¹)
hence we substitute the values in the formula.
<em> </em><em>you</em><em> </em><em>can</em><em> </em><em>ask</em><em> </em><em>questions</em>
Answer:
a) The centripetal acceleration of the car is 0.68 m/s²
b) The force that maintains circular motion is 940.03 N.
c) The minimum coefficient of static friction between the tires and the road is 0.069.
Explanation:
a) The centripetal acceleration of the car can be found using the following equation:

Where:
v: is the velocity of the car = 51.1 km/h
r: is the radius = 2.95x10² m

Hence, the centripetal acceleration of the car is 0.68 m/s².
b) The force that maintains circular motion is the centripetal force:

Where:
m: is the mass of the car
The mass is given by:

Where P is the weight of the car = 13561 N

Now, the centripetal force is:

Then, the force that maintains circular motion is 940.03 N.
c) Since the centripetal force is equal to the coefficient of static friction, this can be calculated as follows:



Therefore, the minimum coefficient of static friction between the tires and the road is 0.069.
I hope it helps you!
Answer:
electronegativity ☝️☝️☝️answer