Answer:
200000 J
Explanation:
From the question given above, the following data were obtained:
Mass (m) of roller coaster = 1000 Kg
Velocity (v) of roller coaster = 20 m/s
Kinetic energy (KE) =?
Kinetic energy is simply defined as the energy possess by an object in motion. Mathematically, it can be expressed as:
KE = ½mv²
Where
KE => is the kinetic energy.
m =>is the mass of the object
V => it the velocity of the object.
With the above formula, we can obtain the kinetic energy of the roller coaster as follow:
Mass (m) of roller coaster = 1000 Kg
Velocity (v) of roller coaster = 20 m/s
Kinetic energy (KE) =?
KE = ½mv²
KE = ½ × 1000 × 20²
KE = 500 × 400
KE = 200000 J
Therefore, the kinetic energy of the roller coaster is 200000 J.
It will take 6.42 s for the ball that is dropped from a height of 206 m to reach the ground.
From the question given above, the following data were obtained:
Height (H) = 206 m
<h3>Time (t) =? </h3>
NOTE: Acceleration due to gravity (g) = 10 m/s²
The time taken for the ball to get to the ground can be obtained as follow:
H = ½gt²
206 = ½ × 10 × t²
206 = 5 × t²
Divide both side by 5

Take the square root of both side

<h3>t = 6.42 s</h3>
Therefore, it will take 6.42 s for the ball to get to the ground.
Learn more: brainly.com/question/24903556
Answer:
The duration of the movie is longer than 2 hrs.
Explanation:
Given:
The duration of the movie observed by the crew on the spacecraft is 2 hrs.
According to time-dilation formula:

Here,
is the required time,
is the original time,
is the velocity of the spacecraft and
is the velocity of light.
Since
, so
.
So the time required will be large.
The answer is B.
This is because you add up all of the times (1.44s+1.70s+1.58s+1.76s) and you get 6.48 then you divide 6.48 by 4 to get the average of the times. Now you get the distance (200m) and because speed=distance/time you divide 200m/1.62s to get 123m/s. I hope this made sense :)
Answer: elastic potential energy = 20.27 J
Explanation:
Given that the
Mass M = 0.470 kg
Height h = 4.40 m
Spring constant K = 85 N/m
The maximum elastic potential will be equal to the maximum kinetic energy experienced by the block.
But according to conservative of energy, the maximum kinetic energy is equal to the maximum potential energy experienced by the block of mass M.
That is
K .E = P.E = mgh
Where g = 9.8m/s^2
Substitutes all the parameters into the formula
K.E = 0.470 × 9.8 × 4.4
K.E = 20.27 J
Where K.E = maximum elastic potential energy stored in the spring during the motion of the blocks after the collision which is 20.27J.