For the given reaction, according to the Law of Conservation of Energy, the energy required to decompose Hcl and produce
are equal.
Answer: Option C
<u>Explanation:</u>
According to law of conservation's of energy, energy can only be transferred from reactants to product side. So in this process, it is stated that 185 kJ of energy will be needed to decompose it. So that 185 kJ of energy will be getting transferred to produce the creation of hydrogen and chloride in the product side.
So if we see from the reactants side, the energy of 185 kJ is required for decomposition of hydrogen chloride. Similarly, if we see from the product side, the 185 kJ utilized for decomposition is transferred as energy required to create hydrogen and chlorine atoms. This statement will be in accordance with the law of conservation's of energy.
Answer: -
The approximate number of atoms in a bacterium is 10¹¹
Explanation: -
We are given the mass of a bacterium is 10⁻¹⁵ kg.
We are told that the mass of a hydrogen atom is 10⁻²⁷ kg.
Finally we learn that the average mass of an atom of the bacterium is ten times the mass of a hydrogen atom.
Mass of an atom of bacterium = 10 x mass of hydrogen atom
= 10 x 10⁻²⁷ kg.
= 10⁻²⁶ kg.
Thus the number of atoms in a bacterium = 
= 
= 10¹¹
Depending on how the design is, The bridge will sway, bounce, or move in some way. If the bridge was too stiff the winds would destroy the bridge and cause it to crumble and fall.
Hope that answer works for you! :)
Answer:
a. electrophilic aromatic substitution
b. nucleophilic aromatic substitution
c. nucleophilic aromatic substitution
d. electrophilic aromatic substitution
e. nucleophilic aromatic substitution
f. electrophilic aromatic substitution
Explanation:
Electrophilic aromatic substitution is a type of chemical reaction where a hydrogen atom or a functional group that is attached to the aromatic ring is replaced by an electrophile. Electrophilic aromatic substitutions can be classified into five classes: 1-Halogenation: is the replacement of one or more hydrogen (H) atoms in an organic compound by a halogen such as, for example, bromine (bromination), chlorine (chlorination), etc; 2- Nitration: the replacement of H with a nitrate group (NO2); 3-Sulfonation: the replacement of H with a bisulfite (SO3H); 4-Friedel-CraftsAlkylation: the replacement of H with an alkyl group (R), and 5-Friedel-Crafts Acylation: the replacement of H with an acyl group (RCO). For example, the Benzene undergoes electrophilic substitution to produce a wide range of chemical compounds (chlorobenzene, nitrobenzene, benzene sulfonic acid, etc).
A nucleophilic aromatic substitution is a type of chemical reaction where an electron-rich nucleophile displaces a leaving group (for example, a halide on the aromatic ring). There are six types of nucleophilic substitution mechanisms: 1-the SNAr (addition-elimination) mechanism, whose name is due to the Hughes-Ingold symbol ''SN' and a unimolecular mechanism; 2-the SN1 reaction that produces diazonium salts 3-the benzyne mechanism that produce highly reactive species (including benzyne) derived from the aromatic ring by the replacement of two substituents; 4-the free radical SRN1 mechanism where a substituent on the aromatic ring is displaced by a nucleophile with the formation of intermediary free radical species; 5-the ANRORC (Addition of the Nucleophile, Ring Opening, and Ring Closure) mechanism, involved in reactions of metal amide nucleophiles and substituted pyrimidines; and 6-the Vicarious nucleophilic substitution, where a nucleophile displaces an H atom on the aromatic ring but without leaving groups (such as, for example, halogen substituents).
Answer:
Option-B (water) is the correct answer.
Explanation:
Gas hydrates are made up of Solid-Ice water and a natural gas like Methane gas trapped in the lattice of ice water. Gas hydrates are mainly found deep down in the sea where the atmospheric pressure is greater than 1 atm.
Generally Gas hydrates have two main applications.
a) It stabilizes the sea floor other wise its melting will cause land sliding in sea floor.
b) Secondly, it traps a green house gases like Methane, if released these gases could produce Climate changes.