Explanation:
The two half equations are;
3e + HNO3 → NO
S→ H2SO4 + 6e
When balancing half equations, we have to make sure the number of electrons gained is equal to the number of electrons lost.
<em>Which factor will you use for the top equation?</em>
We multiply by 2 to make the number of electrons = 6e
<em>Which factor will you use for the bottom equation?</em>
We multiply by 1 to make the number of electrons = 6e
Answer:
<u>a</u><u>.</u><u> </u><u>True</u><u>.</u>
Explanation:
Only primary and secondary alcohols can oxidise to give an aldehyde. But a weak oxidizing agent must be used to prevent formation of a carboxylic acid or ketone.
weak oxidizing agents: Chromyl chloride, silver/oxygen/500°C
take an example of <u>e</u><u>t</u><u>h</u><u>a</u><u>n</u><u>o</u><u>l</u><u>:</u>
<u>
</u>
<u>
</u>
<u>B</u><u>y</u><u> </u><u>o</u><u>z</u><u>o</u><u>n</u><u>o</u><u>l</u><u>y</u><u>s</u><u>i</u><u>s</u><u>:</u>
Here, reactants are Ozone gas, Carbon tetrachloride at a temperature (<20°C), ethanoic acid, zinc and water.
take an example of propanol:
if it undergoes ozonolysis, it gives ethanal and methanal.
"Silver chloride is essentially insoluble in water" this statement is true for the equilibrium constant for the dissolution of silver chloride.
Option: b
<u>Explanation</u>:
As silver chloride is essentially insoluble in water but also show sparing solubility, its reason is explained through Fajan's rule. Therefore when AgCl added in water, equilibrium take place between undissolved and dissolved ions. While solubility product constant
for silver chloride is determined by equilibrium concentrations of dissolved ions. But solubility may vary also at different temperatures. Complete solubility is possible in ammonia solution as it form stable complex as water is not good ligand for Ag+.
To calculate
firstly molarity of ions are needed to be found with formula: 
Then at equilibrium cations and anions concentration is considered same hence:
![\left[\mathbf{A} \mathbf{g}^{+}\right]=[\mathbf{C} \mathbf{I}]=\text { molarity of ions }](https://tex.z-dn.net/?f=%5Cleft%5B%5Cmathbf%7BA%7D%20%5Cmathbf%7Bg%7D%5E%7B%2B%7D%5Cright%5D%3D%5B%5Cmathbf%7BC%7D%20%5Cmathbf%7BI%7D%5D%3D%5Ctext%20%7B%20molarity%20of%20ions%20%7D)
Hence from above data
can be calculated by:
= ![\left[\mathbf{A} \mathbf{g}^{+}\right] \cdot[\mathbf{C} \mathbf{I}]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cmathbf%7BA%7D%20%5Cmathbf%7Bg%7D%5E%7B%2B%7D%5Cright%5D%20%5Ccdot%5B%5Cmathbf%7BC%7D%20%5Cmathbf%7BI%7D%5D)
Answer:
Dichloromethane
Explanation:
As we know the atomic number given belongs to following elements, i.e.
Atomic # Element M.Mass
1 Hydrogen 1 g.mol⁻¹
6 Carbon 12 g.mol⁻¹
17 Chlorine 35.5 g.mol⁻¹
Also the molecular formula of Dichloromethane is,
= CH₂Cl₂
Putting molar masses of each element,
= (12)₁ + (1)₂ + (35.5)₂
= 12 + 2 + 71
= 85 g.mol⁺¹
Result:
Hence the only possible structure containing 5 atoms is Dichloromethane.