Answer:
The total current supplied by the source of voltage = 10.29 A
Explanation:
We have a 14-Ω coffee maker and a 14-Ω frying pan are connected in series.
Effective resistance = 14 + 14 = 28Ω
Now we have 28Ω and 20Ω in parallel
Effective resistance

So we have resistor with 11.67Ω in a 120 V source of voltage.
We have equation V = IR
Substituting
120 = I x 11.67
I = 10.29 A
The total current supplied by the source of voltage = 10.29 A
Answer:
The heat capacity for the second process is 15 J/K.
Explanation:
Given that,
Work = 100 J
Change temperature = 5 k
For adiabatic process,
The heat energy always same.


We need to calculate the number of moles and specific heat
Using formula of heat


Put the value into the formula


We need to calculate the heat
Using formula of heat

Put the value into the formula


We need to calculate the heat capacity for the second process
Using formula of heat

Put the value into the formula



Hence, The heat capacity for the second process is 15 J/K.
Answer:
The kinetic energy of the ejected electrons increases.
Explanation:
As we know that electrons are only ejected from a metal surface if the frequency of the incident light increases the work function of the metal. If the frequency of the incident light is less than the work function of the metal no matter how intense the beam the electrons will not be ejected from the surface.
Using conservation of energy principle we have
If we increase the intensity of incident light the term on the LHS of the above equation increases this increase appears in the kinetic energy term in RHS of the equation since
remains constant.
The order of magnitude of my age in seconds is 10^9. I think you'll find that this is true for anyone who is 32 or older.
Have everything in control and in order and discuss about different issues.