Answer: 30.34m/s
Explanation:
The sum of forces in the y direction 0 = N cos 28 - μN sin28 - mg
Sum of forces in the x direction
mv²/r = N sin 28 + μN cos 28
mv²/r = N(sin 28 + μcos 28)
Thus,
mv²/r = mg [(sin 28 + μ cos 28)/(cos 28 - μ sin 28)]
v²/r = g [(sin 28 + μ cos 28)/(cos 28 - μ sin 28)]
v²/36 = 9.8 [(0.4695 + 0.87*0.8829) - (0.8829 - 0.87*0.4695)]
v²/36 = 9.8 [(0.4695 + 0.7681) / (0.8829 - 0.4085)]
v²/36 = 9.8 (1.2376/0.4744)
v²/36 = 9.8 * 2.6088
v²/36 = 25.57
v² = 920.52
v = 30.34m/s
Answer:
a

b

Explanation:
From the question we are told that
The mass of the rock is 
The length of the small object from the rock is 
The length of the small object from the branch 
An image representing this lever set-up is shown on the first uploaded image
Here the small object acts as a fulcrum
The force exerted by the weight of the rock is mathematically evaluated as

substituting values


So at equilibrium the sum of the moment about the fulcrum is mathematically represented as

Here
is very small so
and 
Hence

=> 
substituting values


The mechanical advantage is mathematically evaluated as

substituting values


Hi, it’s the iris. Hope this helped u
If the three spoon touch nothing happens because they are all at room Temperature
Given that.
F=3•i+4•j
And it from point (0,0)m to (5,6)m
dx=final position - initial position
dx=(5,6)-(0,0)
dx=(5,6)m
dx=5•i +6•j
Work done by the force is give by
W = F•dx
W=F•dx
Note that i•i=j•j=1 and i•j=j•i=0
Then,
W=(3i+4j)•(5i+6j)
Therefore,
W=3i•(5i+6j)+4j•(5i+6j)
W=15i•i+18i•j+20j•i+24j•j
W=15+0+0+24
W=39J
Then the work done by the force is 39 Joules