We can use the combined gas law equation to find the new pressure of the gas.

where P - pressure
V - volume
T - temperature
parameters for the first instance are on the left side and parameters for the second instance are on the right side of the equation
P1 - 795 mm Hg x 0.0013 atm/ mm Hg = 1.033 atm
T1 - 23.5 °C + 273 = 296.5 K
T2 - 31.7 °C + 273 = 304.7 K
substituting the values in the equation

P = 0.712 atm
the answer closest to this value is A) 0.723 atm
therefore answer is
<span>A) 0.723 atm</span>
Answer:
The atmosphere is the superhighway in the sky that moves water everywhere over the Earth. Water at the Earth's surface evaporates into water vapor which rises up into the sky to become part of a cloud which will float off with the winds, eventually releasing water back to Earth as precipitation.
Explanation:
If you don't want to plagiarize change it up a bit.
Answer:
Because of the existence of isotopes.
Answer: c. At equilibrium, the concentration of reactants is greater than the products
Explanation:
Equilibrium constant for a reaction is the ratio of concentration of products to the concentration of reactants each raised to the power its stoichiometric coefficients.
For the reaction:

Equilibrium constant is given as:
![K_{eq}=\frac{[N_2O_5]}{[NO_2]\times [NO_3]}](https://tex.z-dn.net/?f=K_%7Beq%7D%3D%5Cfrac%7B%5BN_2O_5%5D%7D%7B%5BNO_2%5D%5Ctimes%20%5BNO_3%5D%7D)
![2.1\times 10^{-20}=\frac{[N_2O_5]}{[NO_2]\times [NO_3]}](https://tex.z-dn.net/?f=2.1%5Ctimes%2010%5E%7B-20%7D%3D%5Cfrac%7B%5BN_2O_5%5D%7D%7B%5BNO_2%5D%5Ctimes%20%5BNO_3%5D%7D)
When
a) K > 1, the concentration of products is greater than the concentration of reactants
b) K < 1, the concentration of reactants is greater than the concentration of products
c) K= 1, the reaction is at equilibrium, the concentration of reactants is equal to the concentration of products
Thus as
is
which is less than 1,
the concentration of reactants is greater than the concentration of products
Ca=40
C=12
O=16
1 mole of CaCO3 has 100 grams
So 50 grams is 0.5 mole