Answer:
30 neutrons
Explanation:
Since the mass of the iron nuclide is 56 , there must be 56−26=30 neutrons, 30 massive, neutral particles in this iron nucleus.
Answer:
well what I think is that C is the correct answer
Rutherford's model shows that an atom is mostly empty space, with electrons orbiting a fixed, positively charged nucleus in set, predictable paths. ... It was after this that Rutherford began developing his model of the atom.
Answer: - 436.5 kJ.
Explanation:
According to Hess’s law of constant heat summation, the heat absorbed or evolved in a given chemical equation is the same whether the process occurs in one step or several steps.
According to this law, the chemical equation can be treated as ordinary algebraic expression and can be added or subtracted to yield the required equation.
The given chemical reaction is,

Now we have to determine the value of
for the following reaction i.e,

According to the Hess’s law, if we divide the reaction by half then the
will also get halved and on reversing the reaction , the sign of enthlapy changes.
So, the value
for the reaction will be:


Hence, the value of
for the reaction is -436.5 kJ.
Answer:
9.12 * 10^20 photons
Explanation:
Given that;
E=n⋅h⋅ν
Where;
E= energy of the electromagnetic radiation
n = number of photons
h = Plank's constant
ν = frequency of electromagnetic radiation
Hence;
n = E/hν
n = 3.46 × 10 -19/6.6 * 10^-34 * 575 * 10^-9
n = 3.46 × 10 -19/3795 * 10^-43
n= 9.12 * 10^20 photons