Molarity is moles divided by liters so do .732 divided by .975 liters.
Answer:
1.06 V
Explanation:
The standard reduction potentials are:
Ag^+/Ag E° = 0.7996 V
Ni^2+/Ni E° = -0.257 V
The half-cell and cell reactions for Ni | Ni^2+ || Ag^+ | Ag are
Ni → Ni^2+ + 2e- E° = 0.257 V
<u>2Ag^+ 2e- → 2Ag </u> <u>E° = 0.7996 V
</u>
Ni + 2Ag^+ → Ni^2+ + 2Ag E° = 1.0566 V
To three significant figures, the standard potential for the cell is 1.06 V
.
Answer:
0.3793 M
Explanation:
The unknown metal is zinc. So the equation of the reaction is;
Zn(s) + Cu^2+(aq) -------> Zn^2+(aq) + Cu(s)
From Nernst equation;
E = E° - 0.0592/n log Q
[Cu2+] = 0.050179 M
n = 2
[Zn^2+] = ?
E = 1.074 V
E° = 0.34 - (-0.76) = 1.1 V
Substituting values;
1.074 = 1.1 - 0.0592/2 log [Zn^2+]/0.050179
1.074 - 1.1 = - 0.0592/2 log [Zn^2+]/0.050179
-0.026 = -0.0296 log [Zn^2+]/0.050179
-0.026/-0.0296 = log [Zn^2+]/0.050179
0.8784 =log [Zn^2+]/0.050179
Antilog(0.8784) = [Zn^2+]/0.050179
7.558 = [Zn^2+]/0.050179
[Zn^2+] = 7.558 * 0.050179
[Zn^2+] = 0.3793 M
a method of procedure that has characterized natural science since the 17th century, consisting in systematic observation, measurement, and experiment, and the formulation, testing, and modification of hypotheses.