Answer:
The pressure of the gas would be 3.06 atm
Explanation:
Amonton's law states that the pressure is directly proportional to the absolute temperature of a gas under constant volume. The equation is:
P1 / T1 = P2 / T2
<em>Where P1 is the initial pressure = 3.16atm</em>
<em>T1 is initial absolute temperature = 273.15 + 32.2°C = 305.35K</em>
<em>P2 is our incognite</em>
<em>And T2 is = 273.15 + 22.9°C = 296.05K</em>
<em />
Replacing:
3.16atm / 305.35K = P2 / 296.05K
3.06 atm = P2
<h3>The pressure of the gas would be 3.06 atm</h3>
D) energy required to remove a valence electron
Explanation:
The ionization energy is the energy required to remove a valence electron from an element.
Different kinds of atoms bind their valence electrons with different amount of energy.
- To remove the electrons, energy must be supplied to the atom.
- The amount of energy required to remove the an electron in the valence shell is the ionization energy or ionization potential.
- The first ionization energy is the energy needed to remove the most loosely bound electron in an atom in the ground state.
- The ionization energy measures the readiness of an atom to loose electrons.
Learn more:
Ionization energy brainly.com/question/5880605
#learnwithBrainly