Because its structure is drawn by dots which can't describ its structure.
Answer:
Hydrogen may not be advantageous as a fuel because...
- Its expensive
- Its difficult to store
- Its highly flammable
- Its dependent on fossil fuels
Explanation:
Its expensive - Not only is hydrogen gas expensive, but it also takes a lot of work to free from other elements. It is both expensive and time-consuming to produce.
Its difficult to store - Moving hydrogen is not an easy task. Moving anything more than small amounts of hydrogen was also very expensive, making it impractical.
Its highly flammable - When exposed to the atmosphere, hydrogen could potentially form explosive mixtures.
Its dependent on fossil fuels - Hydrogen energy itself is renewable. However, the process of separating it from oxygen uses non-renewable sources such as coal and oil.
~Hope this Helps!~
Explanation:
A catalyst lowers the activation energy of a reaction allowing them to proceed faster than they would naturally. Activation energy is the free energy that is required to be input in the reactant side to activate them to the transition state after which the reaction proceeds spontaneously to products.
An example of a catalyst is platinum, that is put in the exhaust of cars, to help convert carbon monoxide to carbon dioxide before it is emitted into the air.
Answer:
Option B. 6 atoms of carbon
Explanation:
In <u><em>any chemical reaction</em></u>, atoms from reactant side and product side must be the same.
This is photosynthesis reaction:
6CO₂ + 6H₂O → C₆H₁₂O₆ + 6O₂
Answer:
a. NH3 is limiting reactant.
b. 44g of NO
c. 40g of H2O
Explanation:
Based on the reaction:
4NH₃(g) + 5O₂(g) → 4NO(g) + 6H₂O(l)
4 moles of ammonia reacts with 5 moles of oxygen to produces 4 moles of NO and 6 moles of water.
To find limiting reactant we need to find the moles of each reactant and using the balanced equation find which reactant will be ended first. Then, with limiting reactant we can find the moles of each reactant and its mass:
<em>a. </em><em>Moles NH3 -Molar mass. 17.031g/mol-</em>
25g NH3*(1mol/17.031g) = 1.47moles NH3
Moles O2 = 4 moles
For a complete reaction of 4 moles of O2 are required:
4mol O2 * (4mol NH3 / 5mol O2) = 3.2 moles of NH3.
As there are just 1.47 moles, NH3 is limiting reactant
b. Moles NO:
1.47moles NH3 * (4mol NO/4mol NH3) = 1.47mol NO
Mass NO -Molar mass: 30.01g/mol-
1.47mol NO * (30.01g/mol) = 44g of NO
c. Moles H2O:
1.47moles NH3 * (6mol H2O/4mol NH3) = 2.205mol H2O
Mass H2O -Molar mass: 18.01g/mol-
2.205mol H2O * (18.01g/mol) = 40g of H2O