The equation of the energy of a photon is E=h*f.
If we increase the Planck's constant h, the energy would increase.
For example, lets double the value of Planck's constant and name it H:
H=2*h. Now lets put that into the equation for energy that we will call E₂:
E₂=H*f=2*h*f=2*E.
So we can clearly see that E₂=2*E or that if we double Planck's constant, the energy also doubles.
Answer:
232 J/K
Explanation:
The amount of heat gained by the air = the amount of heat lost by the tea.
q_air = -q_tea
q = -mCΔT
q = -(0.250 kg) (4184 J/kg/ºC) (20.0ºC − 85.0ºC)
q = 68,000 J
The change in entropy is:
dS = dQ/T
Since the room temperature is constant (isothermal):
ΔS = ΔQ/T
Plug in values (remember to use absolute temperature):
ΔS = (68,000 J) / (293 K)
ΔS = 232 J/K
Answer: option 4: A wire that is 2-mm thick and coiled.
Explanation:
The current in each wire is same. The magnetic field due to a current carrying wire increases if the wire is coiled with the more number of turns. A thick wire would cause low resistance to the current. Hence, a 2-mm thick wire which is coiled would produce the strongest magnetic field.
That depends on what type of pressure you are attempting to measure, to measure Atmospheric pressure, you would use a Barometer. To measure things like tires, you could use a Tire Pressure Gauge. For Industrial processes and boilers, you would use a Manometer. For pressure vessels, you would use a Bordon Gauge. <span />
Answer with Explanation:
We are given that
Area of loop=

Resistance, R=
B=
We know that magnetic flux

Emf ,
Current, 
Current, 
Substitute t=0 s
Then, I=
=1.6 A
Substitute t=1 s
Then, I=
=0
Substitute
t=2 s
Current, I=
=1.6 A