As stated in the statement, we will apply energy conservation to solve this problem.
From this concept we know that the kinetic energy gained is equivalent to the potential energy lost and vice versa. Mathematically said equilibrium can be expressed as


Where,
m = mass
= initial and final velocity
g = Gravity
h = height
As the mass is tHe same and the final height is zero we have that the expression is now:






I think the answer is Snow flakes
Answer:
Newton's Second Law of Motion says that acceleration (gaining speed) happens when a force acts on a mass (object). Riding your bicycle is a good example of this law of motion at work. Your bicycle is the mass. Your leg muscles pushing pushing on the pedals of your bicycle is the force.
Explanation:
Answer:
v = 21.03 m/s
Explanation:
given,
mass of skier = 45 kg
the slope of the snow = 10.0◦
coefficient of friction = 0.114
distance traveled = 300 m
speed = ?
Acceleration = g sin θ - µ g Cos θ
= 9.8 × Sin (10°) - 0.10 × 9.8 × Cos(10°)
= 0.737 m/s²
using equation of motion
v² = u² + 2 a s
v² = 0 + 2 × 0.737 × 300
v = 21.03 m/s
Speed of skier's after travelling 300 m speed is equal to 21.03 m/s
Answer:
An object which experiences either a change in the magnitude or the direction of the velocity vector can be said to be accelerating. This explains why an object moving in a circle at constant speed can be said to accelerate - the direction of the velocity changes.
if a car turns a corner at constant speed, it is accelerating because its direction is changing. The quicker you turn, the greater the acceleration. So there is an acceleration when velocity changes either in magnitude (an increase or decrease in speed) or in direction, or both.
Explanation: