Answer:
b) Phosphorus acid
Explanation:
To distinguish the type of acid of phosphorus with the oxidation state of +3, we need to be familiar with the chemical formula of each of the compounds:
Orthophosphoric acid H₃PO₄
Phosphorus acid H₃PO₃
Metaphosphoric acid HPO₃
Phyrophosphoric acid H₄P₂O₇
Now that we know the formula of the given compounds, the algebraic sum of all the oxidation numbers of all atoms in a neutral compound is zero:
Only phosphorus acid yielded an oxidation state of +3 for phosphorus in the compound.
H₃PO₃:
we know the oxidation state of H = +1
O = -2
The oxidation state of P is unknown. We can express this as an equation:
3(+1) + P + 3(-2) = 0
3 + P -6 = 0
P-3 = 0
P = +3
Answer:
A. The rate of heat transfer through the material would increase.
Explanation:
To calculate the heat transfer in a heat exchanger you decide that there is not heat leakage to the surroundings, that means that magnitude of the two transfer rates will be equal. Any heat lost by the hot fluid, is gained by the cold fluid. The equation that describes this is Q = m×Cp×dT
Where:
heat = mass flow ×specific heat capacity × temperature difference
So if we increase the rate of flow of cooling water and the other variables that ypu can control remain the same, the result is that the rate of heat transfer through the material would increase, as it is stated in option a.
In chemistry, a solution is a homogeneous mixture composed of two or more substances. In such a mixture, a solute is a substance dissolved in another substance, known as a solvent.
Answer: All of these statements are true
Explanation:
Melting point help us to determine if a mixture is pure or has impurities by the virtues of it melting range..
Answer: It decreases because nonvolatile aluminum and chloride ions now occupy some of the volume of the system.
Explanation:
Vapor pressure of a liquid is defined as the pressure exerted by the vapors in equilibrium with the liquid/solution at a particular temperature.
So, when a non-volatile solute is added to a solvent then its molecules align at the surface of liquid. As a result, less number of solvent molecules will escape from the solution. Thus, there will be decrease in vapors and thus the vapor pressure decrease.
The relative lowering of vapor pressure is directly proportional to the amount of dissolved solute.