Given:
Ma = 31.1 g, the mass of gold
Ta = 69.3 °C, the initial temperature of gold
Mw = 64.2 g, the mass of water
Tw = 27.8 °C, the initial temperature of water
Because the container is insulated, no heat is lost to the surroundings.
Let T °C be the final temperature.
From tables, obtain
Ca = 0.129 J/(g-°C), the specific heat of gold
Cw = 4.18 J/(g-°C), the specific heat of water
At equilibrium, heat lost by the gold - heat gained by the water.
Heat lost by the gold is
Qa = Ma*Ca*(T - Ta)
= (31.1 g)*(0.129 J/(g-°C)(*(69.3 - T °C)-
= 4.0119(69.3 - T) j
Heat gained by the water is
Qw = Mw*Cw*(T-Tw)
= (64.2 g)*(4.18 J/(g-°C))*(T - 27.8 °C)
= 268.356(T - 27.8)
Equate Qa and Qw.
268.356(T - 27.8) = 4.0119(69.3 - T)
272.3679T = 7738.32
T = 28.41 °C
Answer: 28.4 °C
Answer:
i) CCl₄ and Br₂ does not react
ii) CBr₄ + Cl₂ → CCl₄ + Br₂
Explanation:
i) CCl₄ + Br₂ (no reaction)
From the given activity series, we have that chlorine gas, Cl₂, is more reactive than bromine gas, Br₂, therefore, a reaction of CCl₄ + Br₂ will not have a reaction as the propensity for the chlorine to stay combined with the carbon is higher than the ability for bromine to remain combined with or attract the carbon. Therefore, for CCl₄ + Br₂ there is no reaction
ii) CBr₄ + Cl₂
From the given activity series, we have that chlorine gas, Cl₂, is more reactive than bromine gas, Br₂, therefore, a reaction of CBr₄ + Cl₂ will give products that will have the Br in the CBr₄ replaced by the Cl₂ as follows;
CBr₄ + Cl₂ → CCl₄ + Br₂
The products of the reaction of CBr₄ and Cl₂ are therefore CBr₄ and Cl₂.
Answer:
15900
Explanation:
I think hope this helps!! :D
Answer:
9.51 × 10⁴ kL
Explanation:
Step 1: Given data
Volume of the sample (V): 9.51 × 10⁹ cL
Step 2: Convert "V" to liters
We will use the conversion factor 1 L = 100 cL.
9.51 × 10⁹ cL × (1 L / 100 cL) = 9.51 × 10⁷ L
Step 3: Convert "V" to kL
We will use the conversion factor 1 kL = 1000 L.
9.51 × 10⁷ L × (1 kL / 1000 L) = 9.51 × 10⁴ kL
9.51 × 10⁹ cL is equal to 9.51 × 10⁴ kL.
Many electrophilic aromatic halogenations require the presence of an aluminum trihalide as a catalyst. We generally acetylated the amino group as protection. Now, this acetanilide can be brominated at Ortho or para position. An atom that is attached to an aromatic system usually hydrogen is replaced by an electrophile is an organic reaction which is called Electrophilic aromatic substitution. There are what you called important electrophilic aromatic substitutions they are aromatic nitration, aromatic sulfonation, aromatic halogenation and acylation and alkylating Friedel-Crafts reaction. Aromatic bromination is an electrophilic aromatic substitution (EAS) reaction, which will require benzene to act as a nucleophile to acquire an electrophile. Therefore, any directing groups that activate the ring will make it react more quickly with respect to aromatic bromination. Acetanilide is a moderately-activated ring <span>having a decent EWG.</span>