1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ANEK [815]
3 years ago
8

What is the acceleration of an object with a mass of 15 kg and a coefficient of friction of 0.18

Physics
1 answer:
11111nata11111 [884]3 years ago
7 0

Answer:

a = 1.764m/s^2

Explanation:

By Newton's second law, the net force is F = ma.

The equation for friction is F(k) = F(n) * μ.

In this case, the normal force is simply F(n) = mg due to no other external forces being specified

F(n) = mg = 15kg * 9.8 m/s^2 =  147N.

F(k) = F(n) * μ = 147N * 0.18 = 26.46N.

Assuming the object is on a horizontal surface, the force due to gravity and the normal force will cancel each other out, leaving our net force as only the frictional one.

Thus, F(net) = F(k) = ma

26.46N = 15kg * a

a = 1.764m/s^2

You might be interested in
2. When can you legally use your cell phone while
Juliette [100K]
Never is the correct answer
4 0
3 years ago
Read 2 more answers
If you increase the size of the resistor and keep the voltage the same, what will happen to the current
Grace [21]

Answer:

If voltage is kept constant across the resistor itself, it' current will reduce. If the resistance is part of oscillator circuit, frequency response will change. If it is in series with capacitor or inductor, it will change the damping effect.

Explanation:

8 0
3 years ago
What is the frequency and wavelength, in nanometers, of photons capable of just ionizing nitrogen atoms?
nika2105 [10]

Answer:

The frecuency and wavelength of a photon capable to ionize the nitrogen atom are ν = 3.394×10¹⁵ s⁻¹  and λ = 88.31 nm.

Explanation:It is possible to know what are the frequency and wavelength of a photon capable to ionize the nitrogen atom using the equation of the energy of a photon described below.

E = hc/λ  (1)

Where h is the Planck constant, c is the speed of light and λ is the wavelength of the photon.

But first, it is neccesary to know the ionization energy of the nitrogen atom. The ionization energy is the energy needed to remove an electron from an atom, for the Nitrogen atom it will lose an electron of its outer orbit from the nucleus, farther snuff, so the electric force is weaker. Experimentally, it is known that it has a value of 14.04 eV. This value is easy to found in a periodic table.

So the nitrogen atom will need a photon with the energy of 14.04 eV to remove the electron from its outer orbit.

Replacing the Planck constant, the speed of light and the energy of the photon in the equation 1, the wavelength can be calculated:

λ = hc/E  (2)

Where h = 6.626×10⁻³⁴ J.s and c = 3.00×10⁸ m/s

But the Planck constant can be expressed in electron volts:

1 eV = 1.602 x 10⁻¹⁹ J

h = 6.626x10⁻³⁴ J/1.602x10⁻¹⁹ J . eV .s

h= 4.136x10⁻¹⁵ eV.s

Now, it is convenient to express the speed of light in nanometers:

1nm = 1x10⁻⁹ m

c = 3.00x10⁸ m/ 1x10⁻⁹ m

c = 3x10¹⁷ nm/s

Substituting in equation 2:

λ =  (4.136x10⁻¹⁵ eV.s)(3x10¹⁷ nm/s)/14.04 eV

λ = 1240 eV. nm/ 14.04 eV

λ = 88.31 nm

The frenquency is calculated using the equation 2 in the following way:

E = hν  (3)

Where ν is the frecuency

ν = E/h

ν = 14.04 eV/4.136×10⁻¹⁵ eV.s

ν = 3.394×10¹⁵ s-1

So the frecuency of a photon, capable to ionize the nitrogen atom, will be 3.394×10¹⁵ s⁻¹ and its wavelength 88.31 nm.

4 0
3 years ago
Potassium is a crucial element for the healthy operation of the human body. Potassium occurs naturally in our environment and th
gregori [183]

Complete Question

Potassium is a crucial element for the healthy operation of the human body. Potassium occurs naturally in our environment and thus our bodies) as three isotopes: Potassium-39, Potassium-40, and Potassium-41. Their current abundances are 93.26%, 0.012% and 6.728%. A typical human body contains about 3.0 grams of Potassium per kilogram of body mass. 1. How much Potassium-40 is present in a person with a mass of 80 kg? 2. If, on average, the decay of Potassium-40 results in 1.10 MeV of energy absorbed, determine the effective dose (in Sieverts) per year due to Potassium-40 in an 80- kg body. Assume an RBE of 1.2. The half-life of Potassium-40 is 1.28 * 10^9years.

Answer:

The potassium-40 present in 80 kg is  Z = 0.0288 *10^{-3}\ kg

The effective dose absorbed per year is  x = 2.06 *10^{-24} per year

Explanation:

From the question we are told that

      The mass of potassium in 1 kg of human body is m =  3g= \frac{3}{1000} =  3*10^{-3} \ kg

      The mass of the person is M = 80 \ kg

       The abundance of Potassium-39 is   93.26%

        The abundance of Potassium-40 is   0.012%

         The abundance of Potassium-41 is   6.78 %

         The energy absorbed is  E =  1.10MeV = 1.10 *10^{6} * 1.602 *10^{-19} = 1.7622*10^{-13} J

Now  1 kg of human body contains       3.0*10^{-3}\ kg of  Potassium

So      80 kg of human body contains      k kg of  Potassium

=>   k = \frac{ 80 * 3*10^{-3}}{1}

     k = 0.240\  kg

Now from the question potassium-40 is  0.012% of the total  potassium so

     Amount of potassium-40  present is mathematically represented as

            Z = \frac{0.012}{100}  * 0.240

            Z = 0.0288 *10^{-3}\ kg

The effective dose (in Sieverts) per year due to Potassium-40 in an 80- kg body is mathematically evaluated as

           D =  \frac{E}{M}

Substituting values

          D =  \frac{1.7622*10^{-13}}{80}

            D =  2.2*10^{-15} J/kg

Converting to Sieverts

We have

           D_s = REB * D

           D_s = 1.2 * 2.2 *10^{-15}

           D_s =  2.64 *10^{-15}

So

     for half-life (1.28 *10^9 \ years)  the dose is  2.64 *10^{-15}

     Then for 1  year the dose would be  x

=>         x = \frac{2.64 *10^{-15}}{1.28 * 10^9}

             x = 2.06 *10^{-24} per year      

7 0
4 years ago
Similarities between extrusive igneous rocks and intrusive igneous rocks
LiRa [457]

Answer:

Well this would be science... not physics...

Explanation:

1) both are a product of cooling lava/magma

2) Both stones can be caused during volcanic eruptions or clastic flow

3) Both are igneous in family (duh)

4) Intrusive rocks are formed underground from seeping into crevasses and are slow cooling and extrusive rocks are fast or instant cooling and cool above the surface (if differences are needed)

8 0
3 years ago
Other questions:
  • Question is in the picture
    12·1 answer
  • On your first trip to Planet X you happen to take along a 180 g mass, a 40-cm-long spring, a meter stick, and a stopwatch. You'r
    8·1 answer
  • Jane has a mass of 40 kg. She pushes on a 50 kg rock with a force of 100 N. What force does the rock exert on Jane?
    15·1 answer
  • A ground-fault circuit interrupter is a (an) _____. A)wire that provides an easier path for a current to take if a short circuit
    8·2 answers
  • A large, cylindrical water tank with diameter 2.40 mm is on a platform 2.00 mm above the ground. The vertical tank is open to th
    5·1 answer
  • Which of the following creates an adhesive force that prevents separation of the parietal and visceral pleurae during ventilatio
    12·1 answer
  • A 675 kg car moving at 15.7 m/s hits from behind another car moving at 9.6 m/s in the same direction. If the second car has a ma
    15·1 answer
  • The difference between an electric motor and an electric generator is that a motor converts _______ energy into energy _______,
    9·2 answers
  • Can someone help with thsi? i will give brainliest
    12·1 answer
  • The higher the voltage across a bulb the b__________ it is.
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!