Answer:
v1 = 377.98 m/s
Explanation:
m = 5 Kg
v0 = 176 m/s
v0x = v0*Cos 32° = 176 m/s*Cos 32° = 149.256 m/s
m1 = 2 Kg
m2 = 3 Kg
t = 4.1 s
g = 9.81 m/s²
Before the explosion
pix = m*v0x = 5 Kg*149.256 m/s = 746.282 Kgm/s
piy = 0
After the explosion
pfx = m1*v1x
knowing that pix = pfx
we have
746.282 = 2*v1x
v1x = 373.14 m/s
v2y = g*t
pfy = m1*v1y + m2*v2y
pfy = 2*v1y + 3*(9.81*4.1)
pfy = 2*v1y + 120.663
knowing that piy = pfy = 0
we have
0 = 2*v1y + 120.663
v1y = 60.33 m/s
Finally we apply
v1 = √(v1x² + v1y²)
v1 = √(373.14² + 60.33²)
v1 = 377.98 m/s
-Geographic north and south poles are determined by the earth's spin.
-Magnetic north and south is determined by the direction a compass points.
Hope this helps,
kwrob
Answer:
Answer is explained in the explanation section below.
Explanation:
Solution:
We know that the Electric field inside the thin hollow shell is zero, if there is no charge inside it.
So,
a) 0 < r < r1 :
We know that the Electric field inside the thin hollow shell is zero, if there is no charge inside it.
Hence, E = 0 for r < r1
b) r1 < r < r2:
Electric field =?
Let, us consider the Gaussian Surface,
E x 4
= 
So,
Rearranging the above equation to get Electric field, we will get:
E = 
Multiply and divide by
E =
x 
Rearranging the above equation, we will get Electric Field for r1 < r < r2:
E= (σ1 x
) /(
x
)
c) r > r2 :
Electric Field = ?
E x 4
= 
Rearranging the above equation for E:
E = 
E =
+ 
As we know from above, that:
= (σ1 x
) /(
x
)
Then, Similarly,
= (σ2 x
) /(
x
)
So,
E =
+ 
Replacing the above equations to get E:
E = (σ1 x
) /(
x
) + (σ2 x
) /(
x
)
Now, for
d) Under what conditions, E = 0, for r > r2?
For r > r2, E =0 if
σ1 x
= - σ2 x 
A) The biggest astronomical object is the Universe, which contains billions of galaxies among which there is the Milky Way.
The Milky Way contains thousands of planetary systems, among which the Solar System.
The Solar System contains many <span>planets <span>(but only one star, the Sun)</span>,</span> among which there is Earth.
Therefore you can label:
A = Universe, B = Milky Way, C = Solar system, D = Earth
b) Given what we said before, you could label D also any other planet in the Solar System, therefore you can choose among Mercury, Venus, Mars, Jupiter, Saturn, Uranus, and Neptune.
Meselson and Stahl
<u>Explanation:</u>
<u></u>
The classic experiment that supported the semiconservative model of dna replication was performed by Matthew Meselson and Franklin W. Stahl. In this model, the two strands of DNA unwind from each other, and each acts as a template for synthesis of a new, complementary strand. This results in two DNA molecules with one original strand and one new strand. They used E. coli bacteria as a model system.