Answer:
![v=+(9.56475-\frac{v}{8})\times t](https://tex.z-dn.net/?f=v%3D%2B%289.56475-%5Cfrac%7Bv%7D%7B8%7D%29%5Ctimes%20t)
![t=57.9352\ s](https://tex.z-dn.net/?f=t%3D57.9352%5C%20s)
Explanation:
Given:
mass of the object, ![m=80\ kg](https://tex.z-dn.net/?f=m%3D80%5C%20kg)
force of buoyancy acting on the object, ![F_B=\frac{m.g}{40} =19.62\ N](https://tex.z-dn.net/?f=F_B%3D%5Cfrac%7Bm.g%7D%7B40%7D%20%3D19.62%5C%20N)
initial velocity of the object, ![u=0\ m.s^{-1}](https://tex.z-dn.net/?f=u%3D0%5C%20m.s%5E%7B-1%7D)
Given that the water resistance acts on the object is proportional to ![10\ N.s.m^{-1}](https://tex.z-dn.net/?f=10%5C%20N.s.m%5E%7B-1%7D)
So, the net force acting on the object:
![F=m.g-F_B+10\times v](https://tex.z-dn.net/?f=F%3Dm.g-F_B%2B10%5Ctimes%20v)
![F=784.8-19.62+10.v](https://tex.z-dn.net/?f=F%3D784.8-19.62%2B10.v)
.........................................(1)
Now the acceleration of the object can be given as:
![a=\frac{F}{m}](https://tex.z-dn.net/?f=a%3D%5Cfrac%7BF%7D%7Bm%7D)
![a=\frac{765.18-10v}{80}](https://tex.z-dn.net/?f=a%3D%5Cfrac%7B765.18-10v%7D%7B80%7D)
![a=9.56475-\frac{v}{8}](https://tex.z-dn.net/?f=a%3D9.56475-%5Cfrac%7Bv%7D%7B8%7D)
From the standard equation of motion:
![v=u+at](https://tex.z-dn.net/?f=v%3Du%2Bat)
final velocity
initial velocity
time
.................................(2)
Now the velocity of the object is, ![v=60\ m.s^{-1}](https://tex.z-dn.net/?f=v%3D60%5C%20m.s%5E%7B-1%7D)
![60=+(9.56475-\frac{60}{8})\times t](https://tex.z-dn.net/?f=60%3D%2B%289.56475-%5Cfrac%7B60%7D%7B8%7D%29%5Ctimes%20t)
![t=57.9352\ s](https://tex.z-dn.net/?f=t%3D57.9352%5C%20s)