1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
rewona [7]
3 years ago
13

If questions asked in a research study to do not accurately relate to the subject or construct being studied, the study’s ______

____ is compromised. A. population B. evaluation C. administration D. validity Please select the best answer from the choices provided A B C D
Physics
1 answer:
Elina [12.6K]3 years ago
4 0

Answer: d

Explanation: Did it on Ed2020 got it right

You might be interested in
When a high-energy proton or pion traveling near the speed of light collides with a nucleus, it may travel 2.5 x 10-15 m before
Tasya [4]

Explanation:

It is given that,

When a high-energy proton or pion traveling near the speed of light collides with a nucleus, d=2.5\times 10^{-15}\ m

Speed of light, c=3\times 10^{8}\ m\s

Let t is the time interval required for the strong interaction to occur. The speed is given by :

c=\dfrac{d}{t}

t=\dfrac{d}{c}

t=\dfrac{2.5\times 10^{-15}\ m}{3\times 10^{8}\ m/s}

t=8.33\times 10^{-24}\ s

So, the time interval required for the strong interaction to occur is 8.33\times 10^{-24}\ s. Hence, this is the required solution.

8 0
3 years ago
A car travels a distance of 100 km. For the first 30 minutes it is driven at a constant speed of 80 km/hr. The motor begins to v
gregori [183]

Explanation:

First, we need to determine the distance traveled by the car in the first 30 minutes, d_{\frac{1}{2}}.

Notice that the unit measurement for speed, in this case, is km/hr. Thus, a unit conversion of from minutes into hours is required before proceeding with the calculation, as shown below

                                          d_{\frac{1}{2}\text{h}} \ = \ \text{speed} \ \times \ \text{time taken} \\ \\ \\ d_{\frac{1}{2}\text{h}} \ = \ 80 \ \text{km h}^{-1} \ \times \ \left(\displaystyle\frac{30}{60} \ \text{h}\right) \\ \\ \\ d_{\frac{1}{2}\text{h}} \ = \ 80 \ \text{km h}^{-1} \ \times \ 0.5 \ \text{h} \\ \\ \\ d_{\frac{1}{2}\text{h}} \ = \ 40 \ \text{km}

Now, it is known that the car traveled 40 km for the first 30 minutes. Hence, the remaining distance, d_{\text{remain}} , in which the driver reduces the speed to 40km/hr is

                                             d_{\text{remain}} \ = \ 100 \ \text{km} \ - \ 40 \ \text{km} \\ \\ \\ d_{\text{remain}} \ = \ 60 \ \text{km}.

Subsequently, we would also like to know the time taken for the car to reach its destination, denoted by  t_{\text{remian}}.

                                              t_{\text{remain}} \ = \ \displaystyle\frac{\text{distance}}{\text{speed}} \\ \\ \\ t_{\text{remain}} \ = \ \displaystyle\frac{60 \ \text{km}}{40 \ \text{km hr}^{-1}} \\ \\ \\ t_{\text{remain}} \ = \ 1.5 \ \text{hours}.

Finally, with all the required values at hand, the average speed of the car for the entire trip is calculated as the ratio of the change in distance over the change in time.

                                                     \text{speed} \ = \ \displaystyle\frac{\Delta d}{\Delta t} \\ \\ \\ \text{speed} \ = \ \displaystyle\frac{100 \ \text{km}}{(0.5 \ \text{hr} \ + \ 1.5 \ \text{hr})} \\ \\ \\ \text{speed} \ = \ \displaystyle\frac{100 \ \text{km}}{2 \ \text{hr}} \\ \\ \\ \text{speed} \ = \ 50 \ \text{km hr}^{-1}

Therefore, the average speed of the car is 50 km/hr.

8 0
3 years ago
Suppose the ring rotates once every 4.30 ss . If a rider's mass is 58.0 kgkg , with how much force does the ring push on her at
Stells [14]

Answer:

422.36 N

Explanation:

given,

time of rotation = 4.30 s

T = 4.30 s

Assuming the diameter of the ring equal to 16 m

radius, R = 8 m

v = \dfrac{2\pi R}{T}

v = \dfrac{2\pi\times 8}{4.30}

  v = 11.69 m/s

now, Force does the ring push on her at the top

- N - m g = \dfrac{-mv^2}{R}

N + m g = \dfrac{mv^2}{R}

N = \dfrac{mv^2}{R}- m g

N = m(\dfrac{v^2}{R}- g)

N = 58\times (\dfrac{11.69^2}{8}- 9.8)

N = 422.36 N

The force exerted by the ring to push her is equal to 422.36 N.

6 0
3 years ago
Scientists have proven that genes play no role in self-esteem. Please select the best answer from the choices provided. T F
IRINA_888 [86]
The answer is False give thanks for the answer m8 and happy Halloween
6 0
3 years ago
Read 2 more answers
Average velocity is different than average speed because calculating average velocity involves ?
Studentka2010 [4]
Direction!

Velocity is a vector quantity and speed is a scalar quantity. Vector quantities includes both magnitude and direction, while scalar quantities only have magnitude. :)
5 0
3 years ago
Read 2 more answers
Other questions:
  • The cretaceous-paleogene was a mass extinction event in which nearly every single large, land-dwelling dinosaur went extinct. WH
    10·2 answers
  • In general, what happens to temperature as depth below earths surface increases
    8·1 answer
  • Which example best shows how taxonomy can help us understand the evolutionary relationships among species?
    7·2 answers
  • Ethan made a diagram to compare examples of the first and second laws of thermodynamics. What belongs in the areas marked X and
    15·2 answers
  • A current carrying wire wrapped around an iron ore is called a
    6·1 answer
  • Which factor listed below most likely results in the loss of genetic variation from small populations?
    5·1 answer
  • An athlete whose mass is 97.0 kg kg is performing weight-lifting exercises. Starting from the rest position, he lifts, with cons
    14·1 answer
  • a body of radius R and mass m is rolling horizontally without slipping with speed v. it then rolls us a hill to a maximum height
    14·1 answer
  • the aeroplane in fig 3.1 flies an outward journey from Budapest (Hungary) to palermo (Italy) in 2.75 the distance is 2200 KM (i)
    10·1 answer
  • What’s better csp or pv ?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!