Answer:
Temperature will be 305 K
Explanation:
We have given The asteroid has a surface area 
Power absorbed P = 3800 watt
Boltzmann constant 
According to Boltzmann rule power radiated is given by




So temperature will be 305 K
We don't know. A black hole is a star that has collapsed into its own gravity. The gravity in fact, is so strong that even light cannot get through it. That's why it looks black to us.
The tennis ball lands at a point 40.4 m from the base of the building.
The tennis ball is projected with a horizontal velocity <em>u</em> from a window, which is at a height <em>y</em> from the ground. The ball lands at a distance <em>x</em> from the base of the building. Let the ball take a time <em>t</em> to reach the ground. In the time <em>t</em> ,the ball falls a vertical distance <em>y</em> and also travel a horizontal distance <em>x</em>.
The initial vertical velocity of the ball is zero, since the ball is projected in the horizontal direction. The ball falls down under the action of gravitational force.
Thus, use the equation of motion,

rewrite the expression for <em>t</em> and calculate the value of <em>t</em> using 9.81 m/s²for <em>g</em> and 500 m for <em>y</em>.

The horizontal distance <em>x</em> is traveled using the constant velocity <em>u </em>since no force acts on the ball in the horizontal direction.
Therefore,

Substitute 4 m/s for <em>u</em> and 10.096 s for <em>t</em>

Thus, the ball lands at a point 40.4 m from the base of the building.
The acceleration of gravity on Earth is 9.8 m/s². That means that
an object falling under the influence of gravity will move 9.8 m/s
faster than it was moving a second earlier.
Falling from rest, it will be moving 9.8 m/s after the first second,
and 19.6 m/s after the 2nd second.
The height from which it fell doesn't matter.