The solution set of the equation x^2 + 2x - 48 = 0 is x = -1 ± 7
<h3>How to determine the solution set of the equation?</h3>
The equation is given as:
x^2 + 2x - 48 = 0
A quadratic equation is represented as:
ax^2 + bx + c = 0
By comparing both equations, we have
a = 1, b = 2 and c = -48
The solution of the quadratic equation is then calculated using
x = (-b ± √(b^2 - 4ac))/2a
Substitute values for a, b and c in the above equation
x = (-2 ± √(2^2 - 4 * 1 * -48))/2 * 1
This gives
x = (-2 ± √196)/2
Evaluate the square root of 196
x = (-2 ± 14)/2
Divide through by 2
x = -1 ± 7
Hence, the solution set of the equation x^2 + 2x - 48 = 0 is x = -1 ± 7
Read more about quadratic equation at:
brainly.com/question/1214333
#SPJ1
Answer:
It would not be any of those answers. it would be 106 :) Its negative numbers divided
Answer:
64
Step-by-step explanation:
you just need to multiply 8 by itself to get it
The amount needed such that when it comes time for retirement is $2,296,305. This problem solved using the future value of an annuity formula by calculating the sum of a series payment through a specific amount of time. The formula of the future value of an annuity is FV = C*(((1+i)^n - 1)/i), where FV is the future value, C is the payment for each period, n is the period of time, and i is the interest rate. The interest rate used in the calculation is 4.1%/12 and the period of time used in the calculation is 30*12 because the basis of the return is a monthly payment.
FV = $3,250*(((1+(4.1%/12)^(30*12)-1)/(4.1%/12))