Answer:
first mark me Brainliest
Explanation:
Reaction rate, in chemistry, the speed at which a chemical reaction proceeds. It is often expressed in terms of either the concentration (amount per unit volume) of a product that is formed in a unit of time or the concentration of a reactant that is consumed in a unit of time. Alternatively, it may be defined in terms of the amounts of the reactants consumed or products formed in a unit of time. For example, suppose that the balanced chemical equation for a reaction is of the form
A + 3B → 2Z.
Answer:
Taking into account the definition of average atomic mass and isotopes of an element, the information that you need is the masses of its isotopes and their percent abundances.
Each chemical element is characterized by the number of protons in its nucleus, which is called the atomic number Z.
But in the nucleus of each element it is also possible to find neutrons, whose number can vary. The atomic mass (A) is obtained by adding the number of protons and neutrons in a given nucleus.
The same chemical element can be made up of different atoms, that is, their atomic numbers are the same, but the number of neutrons is different. These atoms are called isotopes of the element.
The atomic mass of an element is the weighted average mass of its natural isotopes. Therefore, the atomic mass of an element is not a whole number.
The weighted average means that not all isotopes have the same percentage.
In other words, the atomic masses of chemical elements are usually calculated as the weighted average of the masses of the different isotopes of each element, taking into account the relative abundance of each of them.
Explanation:
Explanation:
Zn + Sn3(PO4)4 = Zn3(PO4)2 + Sn - Balanced Chemical Equation
4.3 is limiting
is the answer
if you like my answer please like comment and mark me as brilliant
Explanation:
an increase in concentration increases the rate of the reaction. This is because there are more reactant particles available which allows for more effective collisions between reactant particles in a given period of time. More effective collisions bring about a faster rate of reaction.