Answer & Explanation:
- The neutralization of H₂SO₄ with NaOH is occurred according to the balanced equation:
<em>H₂SO₄ + 2NaOH → Na₂SO₄ + 2H₂O,</em>
It is clear that every 1.0 mol of H₂SO₄ needs 2 mol of NaOH to be neutralized completely.
<em>So, when you mix one mole of sulfuric acid with 1 mole of sodium hydroxide, there will be an excess of sulfuric acid.</em>
<em>Thus, the pH of the solution remain below 7.</em>
Because of differences in molecular structure, the empirical formula remains different between hydrocarbons; in linear, or "straight-run" alkanes, alkenes and alkynes, the amount of bonded hydrogen lessens in alkenes and alkynes due to the "self-bonding" or catenation of carbon preventing entire saturation of the hydrocarbon by the formation of double or triple bonds.
<span>This inherent ability of hydrocarbons to bond to themselves is referred to as catenation, and allows hydrocarbon to form more complex molecules, such as cyclohexane, and in rarer cases, arenes such as benzene. This ability comes from the fact that bond character between carbon atoms is entirely non-polar, in that the distribution of electrons between the two elements is somewhat even due to the same electronegativity values of the elements (~0.30), and does not result in the formation of an electrophile.
I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!
</span>
Answer:
W = -120 KJ
Explanation:
Since the piston–cylinder assembly undergoes an isothermal process, then the temperature is constant.
Thus; T1 = T2 = 400K
change in entropy; ΔS = −0.3 kJ/K
Formula for change in entropy is written as;
ΔS = Q/T
Where Q is amount of heat transferred.
Thus;
Q = ΔS × T
Q = -0.3 × 400
Q = -120 KJ
From the first law of thermodynamics, we can find the workdone from;
Q = ΔU + W
Where;
ΔU is Change in the internal energy
W = Work done
Now, since it's an ideal gas model, the change in internal energy is expressed as;
ΔU = m•C_v•ΔT
Where;
m is mass
C_v is heat capacity at constant volume
ΔT is change in temperature
Now, since it's an isothermal process where temperature is constant, then;
ΔT = T2 - T1 = 0
Thus;
ΔU = m•C_v•ΔT = 0
ΔU = 0
From earlier;
Q = ΔU + W
Thus;
-120 = 0+ W
W = -120 KJ
C.) Oxygen is an element among them...
"n" represents principal energy level or principal quantum number. Principal energy levels are then subdivided into sublevels. The level of principal energy level is always equal to number of sublevels. Therefore if <span>principal energy level</span> = 4, then there are also 4 sublevels present, namely: 4s, 4p, 4d and 4f sublevels.