This question comes with four answer choices:
<span>A. H2O + H2O ⇄ 2H2 + O2
B. H2O + H2O⇄ H2O2 + H2
C. H2O + H2O ⇄ 4H+ + 2O2-
D. H2O + H2O ⇄ H3O+ + OH-
Answer: option </span><span>D. H2O + H2O ⇄ H3O+ + OH-
(the +sign next to H3O is a superscript, as well as the - sing next to OH)
Explanation:
The self-ionization of water, or autodissociation, produces the two ions H3O(+) and OH(-). The presence of ions is what explain the electrical conductivity of pure water.
</span><span>In this, one molecule of H2O loses a proton (H+) (deprotonates) to become a hydroxide ion, OH−. Then, he <span>hydrogen ion, H+</span>, immediately protonates another water molecule to form hydronium, H3O+.
</span>
Hi Sydney!
I can't draw in this question, but there is a picture showing this phase for you to follow when you draw it.
Hope This Helps :)
Answer:
Explanation:
Water is a conductor if it has solutes/ions dissolved in it(tapwater for example)
but pure water is not a good conductor of electricity.
Nails and keychains(made of metal) are conductors of electricity.
The amount of heat released by the sample has been 22.54 kJ. Thus, option C is correct.
The specific heat has been defined as the amount of heat required to raise the temperature of 1 gram of substance by 1 degree Celsius.
The specific heat has been expressed as:

<h3 /><h3>Computation for the heat absorbed</h3>
The iron and calorimeter are in side the closed system. Thus, the energy released by the sample, has been equivalent to the energy absorbed by the calorimeter.

The given mass of calorimeter has been, 
The specific heat of the calorimeter has been, 
The change in temperature of the calorimeter has been, 
Substituting the values for heat released:

The amount of heat released by the sample has been 22.54 kJ. Thus, option C is correct.
Learn more about specific heat, here:
brainly.com/question/2094845
Answer:
A. for K>>1 you can say that the reaction is nearly irreversible so the forward direction is favored. (Products formation)
B. When the temperature rises the equilibrium is going to change but to know how is going to change you have to take into account the kind of reaction. For endothermic reactions (the reverse reaction is favored) and for exothermic reactions (the forward reaction is favored)
Explanation:
A. The equilibrium constant K is defined as

In any case
aA +Bb equilibrium Cd +dD
where K is:
![K= \frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}](https://tex.z-dn.net/?f=K%3D%20%5Cfrac%7B%5BC%5D%5E%7Bc%7D%5BD%5D%5E%7Bd%7D%7D%7B%5BA%5D%5E%7Ba%7D%5BB%5D%5E%7Bb%7D%7D)
[] is molar concentration.
If K>>> 1 it means that the molar concentration of products is a lot bigger that the molar concentration of reagents, so the forward reaction is favored.
B. The relation between K and temperature is given by the Van't Hoff equation

Where: H is reaction enthalpy, R is the gas constant and T temperature.
Clearing the equation for
we get:

Here we can study two cases: when delta
is positive (exothermic reactions) and when is negative (endothermic reactions)
For exothermic reactions when we increase the temperature the denominator in the equation would have a negative exponent so
is greater that
and the forward reaction is favored.
When we have an endothermic reaction we will have a positive exponent so
will be less than
the forward reactions is not favored.
