I believe the statement above is true. The stronger the wind, the larger the particles it erodes<span>. The stronger the wind, the larger the particles that are carried away.
</span>
<h3><u>Answer;</u></h3>
When hydrogen is covalently bonded to an electronegative atom
<h3><u>Explanation;</u></h3>
- Hydrogen bonding is a special type of dipole-dipole attraction between molecules. It results from the attractive force between a hydrogen atom covalently bonded to a very electronegative atom such as a N, O, or F atom.
- Highly electronegative atoms attract shared electrons more strongly than hydrogen does, resulting in a slight positive charge on the hydrogen atom. The slightly positive hydrogen atom is then attracted to another electronegative atom, forming a hydrogen bond.
the correct answer is.. ill tell you when i search it up gimme 2 seconds
Answer:
The intermolecular forces between CO3^2- and H2O molecules are;
1) London dispersion forces
2) ion-dipole interaction
3) hydrogen bonding
Explanation:
Intermolecular forces are forces of attraction that exits between molecules. These forces are weaker in comparison to the intramolecular forces, such as the covalent or ionic bonds between atoms in a molecule.
Considering CO3^2- and H2O, we must remember that hydrogen bonds occur whenever hydrogen is bonded to a highly electronegative atom such as oxygen. The carbonate ion is a hydrogen bond acceptor.
Also, the London dispersion forces are present in all molecules and is the first intermolecular interaction in molecular substance. Lastly, ion-dipole interactions exists between water and the carbonate ion.