Note down the formula below

Mass of the compound

Mass % of Hydrogen:-



Mass % of Oxygen:-



First, calculate for the amount of heat used up for increasing the temperature of ice.
H = mcpdT
H = (18 g)*(2.09 J/g-K)(50 K) = 1881 J
Then, solve for the heat needed to convert the phase of water.
H = (1 mol)(6.01 kJ/mol) = 6.01 kJ = 6010 J
Then, solve for the heat needed to increase again the temperature of water.
H = (18 g)(4.18 J/gK)(70 k)
H = 5266.8 J
The total value is equal to 13157.8 J
Answer: 13157.8 J
An atom hopefully this helps
<u>Given:</u>
Mass of Ba = 1.50 g
Mass of H2O = 100.0 g
Initial temp T1 = 22 C
Final Temp T2 = 33.1 C
specific heat c = 4.18 J/g c
<u>To determine:</u>
The reaction enthalpy
<u>Explanation:</u>
The heat released during the reaction is:
q = - mc(T2-T1) = - (100+1.5) g *4.18 J/g C * (33.1-22) C = -4709.4 J
# moles of Ba = Mass of Ba/Atomic mass of Ba = 1.5 g/137 g.mol-1 = 0.0109 moles
ΔH = q/mole = - 4709.4 J/0.0109 moles = - 432 kJ/mol
Ans : The enthalpy change for the reaction is -432 kJ/mol