Builderman is dksbdkbsnsbs
Drafting has been around a long time. We can safely assume that since we’ve had a tool in our hands, we’ve been describing plans and technical representations and doodling ideas. Let’s take a closer aspect at drafting and its advance from an under-the-radar part of the method to a very developed skill set.
<u>Explanation</u>
• 1970s – The beginning computer-aided design systems were included in the industry. Following the design engineers tried the learning curve of using CAD, their performance and productivity went through the roof. Over time, CAD software became affordable and more user-friendly, and its fame grew.
• 1990s – CAD software was expanded further to include 3-D characteristics, and quickly the technical designs of the past enhanced increasingly simulated and accessible to engineer.
• Present – The development of drafting has brought us to the present day, were using 3-D representations is the standard and the aim to generate full virtual prototypes.
Answer:
Tech A
Explanation:
The amount of energy required to apply the same force with a 1:1 ratio is divided into 4, so you can apply 4 times as much force than a 1:1 ratio. efficiency and speed come into play here, but assuming the machine powering the gear can run at a unlimited RPM, 4:1 will have more force and a slower output speed than a 2:1 ratio.
Answer:
The correct response is "821.88". A further explanation is given below.
Explanation:
According to the question,
The largest amount unresolved after five years would have been:
= 
= 
= 
Now,
time (t) will be:
= 
= 
So, monthly payment will be:
= 
= 
= 
Answer:
V = 0.30787 m³/s
m = 2.6963 kg/s
v2 = 0.3705 m³/s
v2 = 6.017 m/s
Explanation:
given data
diameter = 28 cm
steadily =200 kPa
temperature = 20°C
velocity = 5 m/s
solution
we know mass flow rate is
m = ρ A v
floe rate V = Av
m = ρ V
flow rate = V =
V = Av = 
V = 
V = 0.30787 m³/s
and
mass flow rate of the refrigerant is
m = ρ A v
m = ρ V
m =
= 
m = 2.6963 kg/s
and
velocity and volume flow rate at exit
velocity = mass × v
v2 = 2.6963 × 0.13741 = 0.3705 m³/s
and
v2 = A2×v2
v2 = 
v2 = 
v2 = 6.017 m/s