1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
m_a_m_a [10]
3 years ago
13

Lets try to get to 100 sub before charismas day Jordan Gracia 32 sub and 5 videos

Engineering
2 answers:
Natasha_Volkova [10]3 years ago
7 0
Keep on posting this and maybe even more people will subscribe to you :)
and I hope you do achieve it
dedylja [7]3 years ago
4 0

Answer:

make this the brainliest and ill do it

You might be interested in
Which of the following refers to software designed to alter system files and utilities on a victim’s system with the intention o
Oksi-84 [34.3K]
The answer is Rootkits.
6 0
3 years ago
Hot carbon dioxide exhaust gas at 1 atm is being cooled by flat plates. The gas at 220 °C flows in parallel over the upper and l
sergeinik [125]

The local convection heat transfer coefficient at 1 m from the leading edge is  0.44 \frac{W}{m^{2} \times K} ,  the average convection heat transfer coefficient over the entire plate is  0.293 \frac{W}{m^{2} \times K}and the total heat flux transfer to the plate is 61.6 KJ.

Explanation:

It is case of heat and mass transfer in which due to temperature difference between gas  and surface. Further temperature  boundary layer will developed on flat plate in longitudinal direction.  

Hot carbon dioxide exhaust gas

physical properties

r= 1.05 \frac{kg}{m^{3}}

c_p = 1.02 \frac{kJ}{Kg \times K}

m= 231 \times 10^{7}  \frac{N \times s }{m^2}

υ = 21.8 \times 10^{6}  \frac{m^2}{s}

k = 32.5 \times 10^{3} \frac{W}{m \times K}

\alpha = 30.1 \times 10^{6} \frac{m^{2}}{s}

Pr = 0.725

Apart from these other data arr given below,

v= 3 \frac{m}{s}  \\ p= 1 atm \\ L_c = 1.5m \\T_g= 220 C \\ T_s = 80 C

To find the local convection heat transfer coefficient at 1 m from the leading edge, we use correlation used for laminar flow over flat plate,

Nu = \frac{ h \times L }{k}  = 0.332 \times (Re^{\frac{1}{2} }) \times (Pr^{\frac{1}{3} })

where h= Average heat transfer coefficient

           L= Length of a plate

           k= Thermal Conductivity of carbon dioxide

           Re = Reynold's Number

           Pr  = Prandtle Number

(a) Convection heat transfer coefficient at 1 m from the leading edge

    is referred as local convection heat transfer coefficient.

   

   To find convection heat transfer coefficient at 1 m from leading edge,

  Nu = \frac{ h_local \times L }{k}  = 0.332 \times (Re^{\frac{1}{2} }) \times (Pr^{\frac{1}{3} })

  Here, first we have to find Re and Pr,

   Re = \frac{r \times v \times L}{m}

   Re = \frac{1.0594 \times 3 \times 1}{231 \times 10^{7}}

   Re = 20.63 \times  10^{-10}

   Pr number is take from physical property data and Pr is 0.725.

   Putting value of Re and Pr in main equation,

   we get

   Nu = \frac{ h_local \times 1 }{32.5 \times 10^{3}}  = 0.332 \times ( (20.63 \times 10^{-10})^{\frac{1}{2} }) \times (0.725^{\frac{1}{3} })

    h_local   = 32.5 \times 10^{3} \times  0.332 \times ( (20.63 \times 10^{-10})^{\frac{1}{2} }) \times (0.725^{\frac{1}{3} })

    h_local   =  0.44 \frac{W}{m^{2} \times K}

(b)  To find average convection heat transfer coefficient,

      it can be find out as case (a), only difference is that instead of L=1 m,        L=1.5 m would come,  

   Therefore,

    Nu = \frac{ h \times 1.5 }{32.5 \times 10^{3}}  = 0.332 \times ( (20.63 \times 10^{-10})^{\frac{1}{2} }) \times (0.725^{\frac{1}{3} })

    Finally,

      h  = \frac{0.44}{1.5}

      h  = 0.293 \frac{W}{m^{2} \times K}

(C) Total heat flux transfer to the plate is found out by,

     Q = h \times (T_g - T_s)

     Q = 0.293 \times (220-80) \\ Q= 0.293 \times 140  \\ Q= 61.6 KJ

     

     

   

   

     

   

     

   

   

 

   

   

   

   

8 0
3 years ago
This manometer is used to measure the difference in water level between the two tanks.
SpyIntel [72]

Answer:

a) True

Explanation:

hope it helps u

3 0
3 years ago
Consider a 2-shell-passes and 8-tube-passes shell-and-tube heat exchanger. What is the primary reason for using many tube passes
Maru [420]

Answer:

See explanation

Explanation:

Solution:-

- The shell and tube heat exchanger are designated by the order of tube and shell passes.

- A single tube pass: The fluid enters from inlet, exchange of heat, the fluid exits.

- A multiple tube pass: The fluid enters from inlet, exchange of heat, U bend of the fluid, exchange of heat, .... ( nth order of pass ), and then exits.

- By increasing the number of passes we have increased the "retention time" of a specific volume of tube fluid; hence, providing sufficient time for the fluid to exchange heat with the shell fluid.

- By making more U-turns we are allowing greater length for the fluid flow to develop with " constriction and turns " into turbulence. This turbulence usually at the final passes allows mixing of fluid and increases the heat transfer coefficient by:

                                U ∝ v^( 0.8 )    .... ( turbulence )

- The higher the velocity of the fluids the greater the heat transfer coefficient. The increase in the heat transfer coefficient will allow less heat energy carried by either of the fluids to be wasted ; hence, reduced losses.

Thereby, increases the thermal efficiency of the heat exchanger ( higher NTU units ).

5 0
3 years ago
Pipe Diameter and Reynolds Number. An oil is being pumped inside a 10.0-mm-diameter pipe at a Reynolds number of 2100. The oil d
alexdok [17]

Answer:

The velocity in the pipe is 5.16m/s. The pipe diameter for the second fluid should be 6.6 mm.

Explanation:

Here the first think you have to consider is the definition of the Reynolds number (Re) for flows in pipes. Rugly speaking, the Reynolds number is an adimensonal parameter to know if the fliud flow is in laminar or turbulent regime. The equation to calculate this number is:

Re=\frac{\rho v D}{\mu}

where \rhois the density of the fluid, \mu is the viscosity, D is the pipe diameter and v is the velocity of the fluid.

Now, we know that Re=2100. So the velocity is:

v=\frac{Re*\mu}{\rho*D} =\frac{2100*2.1x10^{-2}Pa*s }{855kg/m^3*0.01m} =5.16m/s

For the second fluid, we want to keep the Re=2100 and v=5.16m/s. Therefore, using the equation of Reynolds number the diameter is:

D=\frac{Re*\mu}{\rho*v} =\frac{2100*1.5x10^{-2}Pa*s}{925kg/m^3*5.16m/s}=6.6 mm

8 0
3 years ago
Other questions:
  • What is the correct statement regarding the stress over the section of a shaft in torsion?
    13·1 answer
  • Explain why the scenario below fails to illustrate an understanding of the importance of metrology. Situation: Natalie is a cali
    6·1 answer
  • Which are the most common location for a collision between a bike and a car?
    8·1 answer
  • Exhaust gases entering a convergent nozzle have a total pressure (Pt) of 200 kPa and total temperature (Tt) of 800 K. The gases
    5·2 answers
  • The ventilating fan of the bathroom of a building has a volume flow rate of 32 L/s and runs continuously. If the density of air
    7·1 answer
  • If changing employment what do you need to do? Email your new employer information to the Deptartment of International Graduate
    5·1 answer
  • If 100 J of heat is added to a system so that the final temperature of the system is 400 K, what is the change in entropy of the
    5·1 answer
  • Summarize three attributes that are important for an engineer to possess.
    13·1 answer
  • 10. Power = (Distance * Force) / Time
    7·1 answer
  • Best known for his invention of the pressure-ignited heat engine that bears his name,
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!