1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sergeinik [125]
3 years ago
13

The net potential energy EN between two adjacent ions, is sometimes represented by the expression

Engineering
1 answer:
Anastaziya [24]3 years ago
3 0

Answer:

as answered in the attached file.

Explanation:

The detailed steps, derivation and appropriate differentiation is as shown in the attachment

You might be interested in
A crystalline grain of aluminum in a metal plate is situated so that a tensile load is oriented along the [1 1 1] direction. Wha
Ivenika [448]

Answer: required tensile stress is 0.889 MPa

Explanation:

Given that;

tensile load is oriented along the [1 1 1] direction

shear stress is 0.242 MPa along [1 0 1] in the (1 1 -1) plane

first we determine

λ which is Angle between  [1 1 1]  and  [1 0 1]

so

cosλ = [ 1(1) +  1(0) + 1(1) ] / [ √(1² + 1² + 1²) √(1² + 0² + 1²)]

= 2 / √3√2 =  2/√6

Next, we determine ∅ which is angle between [1 1 1]  and  [1 1 -1]

so,

cos∅ = [ 1(1) +  1(1) + 1(-1) ] / [ √(1² + 1² + 1²) √(1² + 1² + (-1)²)]

cos∅ = [ 2-1] / [√3√3 ]

cos∅ = 1/3

Now, we know that;

σ = T_stress/cosλcosθ

so we substitute

σ = 0.242 / ( 2/√6 × 1/3 )

σ = 0.242 / 0.2721

σ = 0.889 MPa

Therefore, required tensile stress is 0.889 MPa

3 0
3 years ago
(a) Consider a germanium semiconductor at T 300 K. Calculate the thermal equilibrium electron and hole concentrations for (i) Nd
padilas [110]

Answer:

a.

i. electron concentration, n₀ = 2 × 10¹⁵ cm⁻³, hole concentration, p₀ = 2 × 10¹¹ cm⁻³

ii. electron concentration, n₀ = 1.33 × 10¹¹ cm⁻³, hole concentration, p₀ = 3 × 10¹⁵ cm⁻³

b.  

i. electron concentration, n₀ = 2 × 10¹⁵ cm⁻³, hole concentration, p₀ = 2.205 × 10⁻³ cm⁻³

ii. electron concentration, n₀ = 1.47 × 10⁻³ cm⁻³, hole concentration, p₀ = 3 × 10¹⁵ cm⁻³

c. It means that the minority carrier contribute little to the conductivity of the semi-conductor.

Explanation:

a. For Germanium, intrinsic concentration n₁ = 2 × 10¹³ cm⁻³.

i. For the electron concentration, n₀ wit N₁ = donor concentration = 2 × 10¹⁵ cm⁻³ and N₂ = acceptor concentration = 0,

n₀ = 1/2[(N₁ - N₂) +√[(N₁ - N₂)² + 4n₁²] ]      since N₁ > N₂

n₀ = 1/2[(2 × 10¹⁵ cm⁻³ - 0) +√[(2 × 10¹⁵ cm⁻³ - 0)² + 4(2 × 10¹³ cm⁻³)²] ]

n₀ = 1/2[(2 × 10¹⁵ cm⁻³ +√[(4 × 10³⁰ cm⁻⁶ + 16 × 10²⁶ cm⁻⁶] ]

n₀ = 1/2[(2 × 10¹⁵ cm⁻³ +√[(4.0016 × 10³⁰ cm⁻⁶] ]

n₀ = 1/2[(2 × 10¹⁵ cm⁻³ + 2.0004 × 10¹⁵ cm⁻³ ]

n₀ = 1/2[4.0004 × 10¹⁵ cm⁻³ ]

n₀ = 2.0002 × 10¹⁵ cm⁻³ ≅ 2 × 10¹⁵ cm⁻³

The hole concentration p₀ is gotten from

n₀p₀ = n₁²

p₀ = n₁²/n₀ = (2 × 10¹³ cm⁻³)²/2 × 10¹⁵ cm⁻³ = 4 × 10²⁶ cm⁻⁶/2 × 10¹⁵ cm⁻³

p₀ = 2 × 10¹¹ cm⁻³

ii.  For the hole concentration, p₀ wit N₁ = donor concentration = 7 × 10¹⁵ cm⁻³ and N₂ =  acceptor concentration = 10¹⁶ cm⁻³,

p₀ = 1/2[(N₂ - N₁) +√[(N₂ - N₁)² + 4n₁²] ]      since N₂ > N₁

p₀ = 1/2[(10¹⁶ cm⁻³ - 7 × 10¹⁵ cm⁻³) +√[(10¹⁶ cm⁻³ - 7 × 10¹⁵ cm⁻³)² + 4(2 × 10¹³ cm⁻³)²] ]

p₀ = 1/2[(3 × 10¹⁵ cm⁻³ +√[(9 × 10³⁰ cm⁻⁶ + 16 × 10²⁶ cm⁻⁶] ]

p₀ = 1/2[(3 × 10¹⁵ cm⁻³ +√[(9.0016 × 10³⁰ cm⁻⁶] ]

p₀ = 1/2[(3 × 10¹⁵ cm⁻³ + 3.0003 × 10¹⁵ cm⁻³ ]

p₀ = 1/2[6.0003 × 10¹⁵ cm⁻³ ]

p₀ = 3.00015 × 10¹⁵ cm⁻³ ≅ 3 × 10¹⁵ cm⁻³

Te electron concentration n₀ is gotten from

n₀p₀ = n₁²

n₀ = n₁²/p₀ = (2 × 10¹³ cm⁻³)²/3 × 10¹⁵ cm⁻³ = 4 × 10²⁶ cm⁻⁶/3 × 10¹⁵ cm⁻³

n₀ = 1.33 × 10¹¹ cm⁻³

b. For GaAs, intrinsic concentration n₁ = 2 × 10⁶ cm⁻³.

i. For the electron concentration, n₀ wit N₁ = donor concentration = 2 × 10¹⁵ cm⁻³ and N₂ =  acceptor concentration = 0,

n₀ = 1/2[(N₁ - N₂) +√[(N₁ - N₂)² + 4n₁²] ]      since N₁ > N₂   and N₁ - N₂ = 2 × 10¹⁵ cm⁻³ >> n₁ = 2 × 10⁶ cm⁻³

n₀ = (N₁ - N₂) = 2 × 10¹⁵ cm⁻³ - 0 = 2 × 10¹⁵ cm⁻³

The hole concentration p₀ is gotten from

n₀p₀ = n₁²

p₀ = n₁²/n₀ = (2.1 × 10⁶ cm⁻³)²/2 × 10¹⁵ cm⁻³ = 4.41 × 10¹² cm⁻⁶/2 × 10¹⁵ cm⁻³

p₀ = 2.205 × 10⁻³ cm⁻³

ii. For the hole concentration, p₀ wit N₁ = donor concentration = 7 × 10¹⁵ cm⁻³ and N₂ =  acceptor concentration = 10¹⁶ cm⁻³,

p₀ = 1/2[(N₂ - N₁) +√[(N₂ - N₁)² + 4n₁²] ]      since N₂ > N₁ and N₂ - N₁ = 10¹⁶ cm⁻³ - 7 × 10¹⁵ cm⁻³ = 3 × 10¹⁵ cm⁻³ >> n₁ = 2.1 × 10⁶ cm⁻³

p₀ ≅ N₂ - N₁ = 3 × 10¹⁵ cm⁻³

The electron concentration n₀ is gotten from

n₀p₀ = n₁²

n₀ = n₁²/p₀ = (2.1 × 10⁶ cm⁻³)²/3 × 10¹⁵ cm⁻³ = 4.41 × 10¹² cm⁻⁶/3 × 10¹⁵ cm⁻³

n₀ = 1.47 × 10⁻³ cm⁻³

c. It means that the minority carrier contribute little to the conductivity of the semi-conductor.

4 0
3 years ago
Due at 11:59pm please help
sergeinik [125]
I believe it’s c table
7 0
3 years ago
Is an example of an electrical device.
Yuki888 [10]
I think that it is all of the above
5 0
3 years ago
Read 2 more answers
Question 74
torisob [31]

Answer:

C). rearview mirror (at least of four inches by four inches).

Explanation:

<u>A 'rearview mirror' would be needed in case one is required to pull an individual on water skis after a PWC(personal watercraft) that is rated for carrying two persons only</u>. This wide-angle mirror for rearview would allow the operator to monitor the person who is being towed constantly along with riding the ski at the same time. It is considered illegal to tow a person on a vessel without having a rearview mirror and at the same time, the limited capacity must also be followed strictly. Hence, <u>option C</u> is the correct answer.

7 0
3 years ago
Other questions:
  • A tendon-operated robotic hand can be implemented using a pneumatic actuator. The actuator can be represented by
    15·1 answer
  • For a 68 wt% Zn-32 wt% Cu alloy, make schematic sketches of the microstructure that would be observed for conditions of very slo
    14·1 answer
  • in a vehicle you're servicing the fuel pressure drops rapidly when the engine is says that one or more turned off. Technician a
    7·1 answer
  • Define ""acidity"" of an aqueous solution. How do you compare the strength of acidity of solutions ?
    6·1 answer
  • A long bone is subjected to a torsion test. Assume that the inner diameter is 0.375 in. and the outer diameter is 1.25 in., both
    14·1 answer
  • An expandable container is filled with 45 in.3 of air and is sitting in ice water that is 32°F. At what volume in in.3 will the
    5·1 answer
  • How many 3-digits numbers which are greater than 300 can be formed from 6
    12·1 answer
  • Multilane roads use what to divide lanes of traffic moving in the same direction.
    14·2 answers
  • A(94,0,14) B(52,56,94) C(10,6,48) D(128,64,10)
    6·1 answer
  • The velocity components expressed in m/s<br>​
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!