Answer:
COP(heat pump) = 2.66
COP(Theoretical maximum) = 14.65
Explanation:
Given:
Q(h) = 200 KW
W = 75 KW
Temperature (T1) = 293 K
Temperature (T2) = 273 K
Find:
COP(heat pump)
COP(Theoretical maximum)
Computation:
COP(heat pump) = Q(h) / W
COP(heat pump) = 200 / 75
COP(heat pump) = 2.66
COP(Theoretical maximum) = T1 / (T1 - T2)
COP(Theoretical maximum) = 293 / (293 - 273)
COP(Theoretical maximum) = 293 / 20
COP(Theoretical maximum) = 14.65
Answer:
138.9 °C
Explanation:
The datum of quality is saying to us that liquid water is in equilibrium with steam. Saturated water table gives information about this liquid-vapour equilibrium. In figure attached, it can be seen that at 350 kPa of pressure (or 3.5 bar) equilibrium temperature is 138.9 °C
Answer:
F = 0.0022N
Explanation:
Given:
Surface area (A) = 4,000mm² = 0.004m²
Viscosity = µ = 0.55 N.s/m²
u = (5y-0.5y²) mm/s
Assume y = 4
Computation:
F/A = µ(du/dy)
F = µA(du/dy)
F = µA[(d/dy)(5y-0.5y²)]
F = (0.55)(0.004)[(5-1(4))]
F = 0.0022N
Answer:
S = 5.7209 M
Explanation:
Given data:
B = 20.1 m
conductivity ( K ) = 14.9 m/day
Storativity ( s ) = 0.0051
1 gpm = 5.451 m^3/day
calculate the Transmissibility ( T ) = K * B
= 14.9 * 20.1 = 299.5 m^2/day
Note :
t = 1
U = ( r^2* S ) / (4*T*<em> t </em>)
= ( 7^2 * 0.0051 ) / ( 4 * 299.5 * 1 ) = 2.0859 * 10^-4
Applying the thesis method
W(u) = -0.5772 - In(U)
= 7.9
next we calculate the pumping rate from well ( Q ) in m^3/day
= 500 * 5.451 m^3 /day
= 2725.5 m^3 /day
Finally calculate the drawdown at a distance of 7.0 m form the well after 1 day of pumping
S = 
where : Q = 2725.5
T = 299.5
W(u) = 7.9
substitute the given values into equation above
S = 5.7209 M
A vector is a phenomenon which in mostly used in mathematics and physics and is related to direction and size.
<u>Explanation:</u>
In mathematics and physics, a vector is a component of a vector space. For some, particular vector spaces, the vectors have gotten explicit names, which are recorded beneath. Verifiably, vectors were presented in geometry and material science before the formalization of the idea of vector space.
A vector is an amount or phenomenon that has two autonomous properties: magnitude and direction. The term likewise means the numerical or geometrical portrayal of such an amount.