1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Karo-lina-s [1.5K]
3 years ago
8

When you are configuring data deduplication, you must choose a usage type for the volume you are configuring. Which of the follo

wing are valid data deduplication usage types? (Choose all that apply.)General purpose file serverDatabase serverVirtual Desktop InfrastructureVirtualized Backup Server
Engineering
1 answer:
Finger [1]3 years ago
6 0

Answer:

1. General purpose file server.

2. Virtual Desktop Infrastructure Server.

3. Virtualized Backup Server.

All except : Database server

Explanation:

As a simple definition, we can tell, data deduplication is an elimination of redundant data in data set and storing only one copy of the same data. It is done by identifying double byte patterns through data analysis, removing double data and replacing it with reference pointed to stored, single piece of data.

You might be interested in
Why does an object under forced convection reach a steady-state faster than an object subjected to free-convection?
bonufazy [111]

Answer:

Free convection:

   When heat transfer occurs due to density difference between fluid then this type of heat transfer is know as free convection.The velocity of fluid is zero or we can say that fluid is not moving.

Force convection:

   When heat transfer occurs due to some external force then this type of heat transfer is know as force convection.The velocity of fluid is not zero or we can say that fluid is moving in force convection.

Heat transfer coefficient of force convection is high as compare to the natural convection.That is why heat force convection reach a steady-state faster than an object subjected to free-convection.

We know that convective heat transfer given as

 q = h  A ΔT

h=Heat transfer coefficient

A= Surface area

ΔT = Temperature difference

5 0
3 years ago
The current entering the positive terminal of a device is i(t)= 6e^-2t mA and the voltage across the device is v(t)= 10di/dtV.
liberstina [14]

Answer:

a) 2,945 mC

b) P(t) = -720*e^(-4t) uW

c) -180 uJ

Explanation:

Given:

                           i (t) = 6*e^(-2*t)

                           v (t) = 10*di / dt

Find:

( a) Find the charge delivered to the device between t=0 and t=2 s.

( b) Calculate the power absorbed.

( c) Determine the energy absorbed in 3 s.

Solution:

-  The amount of charge Q delivered can be determined by:                      

                                       dQ = i(t) . dt

                  Q = \int\limits^2_0 {i(t)} \, dt = \int\limits^2_0 {6*e^(-2t)} \, dt = 6*\int\limits^2_0 {e^(-2t)} \, dt

- Integrate and evaluate the on the interval:

                   = 6 * (-0.5)*e^-2t = - 3*( 1 / e^4 - 1) = 2.945 C

- The power can be calculated by using v(t) and i(t) as follows:

                 v(t) = 10* di / dt = 10*d(6*e^(-2*t)) /dt

                 v(t) = 10*(-12*e^(-2*t)) = -120*e^-2*t mV

                 P(t) = v(t)*i(t) = (-120*e^-2*t) * 6*e^(-2*t)

                 P(t) = -720*e^(-4t) uW

- The amount of energy W absorbed can be evaluated using P(t) as follows:

                 W = \int\limits^3_0 {P(t)} \, dt = \int\limits^2_0 {-720*e^(-4t)} \, dt = -720*\int\limits^2_0 {e^(-4t)} \, dt

- Integrate and evaluate the on the interval:

                  W = -180*e^-4t = - 180*( 1 / e^12 - 1) = -180uJ

6 0
4 years ago
Based on experimental observations, the acceleration of a particle is defined by the relationa = -( 0.1 + sin(x/b) ),where a and
yKpoI14uk [10]

Answer:

a) v = +/- 0.323 m/s

b) x = -0.080134 m

c) v = +/- 1.004 m/s

Explanation:

Given:

                             a = - (0.1 + sin(x/b))

b = 0.8

v = 1 m/s @ x = 0

Find:

(a) the velocity of the particle when x = -1 m

(b) the position where the velocity is maximum

(c) the maximum velocity.

Solution:

- We will compute the velocity by integrating a by dt.

                           a = v*dv / dx =  - (0.1 + sin(x/0.8))

- Separate variables:

                           v*dv = - (0.1 + sin(x/0.8)) . dx

-Integrate from v = 1 m/s @ x = 0:

                          0.5(v^2) = - (0.1x - 0.8cos(x/0.8)) - 0.8 + 0.5

                          0.5v^2 =  0.8cos(x/0.8) - 0.1x - 0.3

- Evaluate @ x = -1

                          0.5v^2 = 0.8 cos(-1/0.8) + 0.1 -0.3

                          v = sqrt (0.104516)

                          v = +/- 0.323 m/s

- v = v_max when a = 0:

                           -0.1 = sin(x/0.8)

                             x = -0.8*0.1002

                             x = -0.080134 m

- Hence,

                            v^2 = 1.6 cos(-0.080134/0.8) -0.6 -0.2*-0.080134

                            v = sqrt (0.504)

                            v = +/- 1.004 m/s

4 0
3 years ago
An 80-percent-efficient pump with a power input of 20 hp is pumping water from a lake to a nearby pool at a speed of 10 ft/s thr
Sladkaya [172]

Answer:

Part A

The mass plow rate, is approximately 97.0 lbm/s

Part B

The power used to overcome friction, is approximately 1.9 hp

Explanation:

The efficiency of the pump, η = 80%

The power input to the pump, P = 20 hp

The speed of the water through the pipe, v = 10 ft./s

The diameter of the pipe, d = 5.2 inches = 13/30 ft.

The free surface of the pool above the lake, h = 80 ft.

The density of the water, ρ = 62.4 lbm/ft.³

Part A

The mass plow rate, \dot m = Q × ρ

Where;

ρ = 62.4 lbm/ft³

Q = A × v

A = The cross-sectional area of the pipe

∴ Q = π·d²/4 × v = π × ((13/30 ft.)²)/4 × 10 ft.s ≈ 1.4748 ft.³/s

∴ The mass plow rate, \dot m ≈ 1.4748 ft.³/s × 62.4 lbm/ft.³ = 97.02752 lbm/s

The mass plow rate, \dot m ≈ 97.0 lbm/s

Part B

The power to pump the water at the given rate, P_w =  \dot m·g·h

∴ P_w =  97.02752 lbm/s × 32.1740 ft./s² × 80 ft. ≈ 14.1130725 Hp

P_w ≈ 14.1130725 Hp

The power output of the pump, P_{out} = 0.8 × 20 hp = 16 hp

Therefore, the power used to overcome friction, P_f = P_{out} - P_w

∴ P_f ≈ 16 hp - 14.1130725 Hp ≈ 1.8869275 hp

The power used to overcome friction,  P_f ≈ 1.9 hp

7 0
3 years ago
What other ways could a wildfire be contained, extinguished, or slowed down?
galben [10]
Back burning, starting fires infront of the main fire to prevent the fire from spreading and depleting fuel for the fire, digging trenches so the fire has no where to go, dropping water from planes or helicopters.
3 0
3 years ago
Other questions:
  • Which solution causes cells to shrink
    13·1 answer
  • These tadpoles are confined to a limited environment. What are they all competing for in that environment
    12·2 answers
  • Jen is developing the positioning statement for a new line of sunglasses. In a meeting, the marketing team tells Jen that she ha
    9·1 answer
  • The 10mm diameter rod is made of Kevlar 49. Determine the change in
    7·1 answer
  • List five things the welding symbol will tell the welder about the weld that is to be made.​
    13·1 answer
  • An inventor claims to have developed a heat engine that produces work at 10 kW, while absorbing heat at 10 kW. Evaluate such a c
    12·1 answer
  • If you are setting up a race car. What is the cross weight? Does it matter?
    5·1 answer
  • El tiempo hasta que falle un sistema informático sigue una distribución Exponencial con media de 600hs. (Utilice 3 decimales par
    13·1 answer
  • I wuv little space :)
    8·1 answer
  • A person walks into a refrigerated warehouse with head uncovered. Model the head as a 25- cm diameter sphere at 35°C with a surf
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!