Answer:
390
Explanation:
Specific heat capacity= heat/mass × temperature

Remember you convert gram into kilogram and 1 gram =0.001 kilogram
Answer:
The unknown solution had the higher concentration.
Explanation:
When two solutions are separated by a semi-permeable membrane, depending on the concentration gradient between the two solutions, there is a tendency for water molecules to move across the semi-permeable in order to establish an equilibrium concentration between the two solutions. This movement of water molecules across a semi-permeable membrane in response to a concentration gradient is known as osmosis. In osmosis, water molecules moves from a region of lower solute concentration or higher water molecules concentration to a region of higher solute concentration or lower water molecules concentration until equilibrium concentration is attained.
Based on the observation that when the glucose solution described in part A is connected to an unknown solution via a semipermeable membrane, the unknown solution level rises, it means that water molecules have passed from the glucose solution through the semipermeable membrane into the unknown solution. Therefore, the solution has a higher solute concentration than the glucose solution.
A chemical reaction that releases energy usually in the form of heat
Answer:
100Jkg/°C
Explanation:
Given parameters:
Mass of metal = 2kg
Amount of heat energy = 1600J
Initial temperature = 5°C
Final temperature = 13°C
Unknown:
Specific heat capacity of the metal = ?
Solution:
Specific heat capacity of a body is the amount of heat needed to raise the temperature of unit mass of a body by 1°C.
H = m x C x (T₂ - T₁ )
H is the amount of heat
m is the mass
C is the unknown specific heat capacity
T is the temperature
Insert the parameters and solve;
1600 = 2 x C x (13 - 5)
1600 = 16C
C = 100Jkg/°C
The correct option would be the fact that both bonding electrons had come from the oxygen to form this chemical bond.
The other options are not true.