Answer:
Explanation:
emf due to movement of a rod of length L in a perpendicular to magnetic field B with velocity v is given as
emf = BLv
Putting in the given values ,
E = 2.45 x 12.5 x 10⁻² x 2.4
= .735 V
This emf produces current in resistance . Power consumed by resistance
V² / R where R is resistance , V is emf induced .
Power = .735² / 1.2
= .45 W .
Answer:
a,b,d and e are correct.
Explanation:
a) Change of temperature without change of velocity is a conclusive evidence of an interaction. As the temperature of a body will only change if heat energy is flows in or out of the body with surrounding. So, option a) is correct.
b) Change of the direction without change of speed is an evidence of an interaction. The direction changes when the object is under a perpendicular acceleration acceleration which clearly means the particle is interacting or external force applied. So, option b is correct.
d) Change of shape or configuration without change of velocity is conclusive evidence of an interaction. The shape can change only if external stress is applied on the particle. So, Option d is correct.
e) Change of identity without change of velocity is a conclusive evidence of an interaction. The identity of an object can only change if it interacts with surroundings. So, option e is correct
Therefore the only incorrect option is c .
Answer:
1.8 m
Explanation:
Given: Glass falls from a table, smashes 0.6 seconds later
To find: How high a table is
Formula: Vv=gt, dv=1/2gt^2, t=2d/g
Solution: A table's <em>height</em> is measured from the top of the edge down to the floor. The tables are shown both have a height of 30 inches, which is common for many tables.
<u>Data</u>
<u>Equation</u>
- d =

²
<u>Math & Units</u>
- d = 4.905 (0.6²)
- d = 442.676
Hence the table is 1.8 m high
<h2>
Answer: The half-life of beryllium-15 is 400 times greater than the half-life of beryllium-13.</h2>
Explanation:
The half-life
of a radioactive isotope refers to its decay period, which is the average lifetime of an atom before it disintegrates.
In this case, we are given the half life of two elements:
beryllium-13: 
beryllium-15: 
As we can see, the half-life of beryllium-15 is greater than the half-life of beryllium-13, but how great?
We can find it out by the following expression:

Where
is the amount we want to find:


Finally:

Therefore:
The half-life of beryllium-15 is <u>400 times greater than</u> the half-life of beryllium-13.
To solve this problem we will use the concepts related to Torque as a function of the Force in proportion to the radius to which it is applied. In turn, we will use the concepts of energy expressed as Work, and which is described as the Torque's rate of change in proportion to angular displacement:

Where,
F = Force
r = Radius
Replacing we have that,



The moment of inertia is given by 2.5kg of the weight in hand by the distance squared to the joint of the body of 24 cm, therefore


Finally, angular acceleration is a result of the expression of torque by inertia, therefore



PART B)
The work done is equivalent to the torque applied by the distance traveled by 60 °° in radians
, therefore


