1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ne4ueva [31]
3 years ago
10

In a doorknob, the knob is connected to a shaft. When the knob turns, the shaft turns,which moves the door latch. The radius of

the shaft is 8 mm. The radius of the doorknob is 56 mm. What is the mechanical advantage of this wheel and axle?
Physics
1 answer:
HACTEHA [7]3 years ago
4 0

Answer:

`7

Explanation:

i know

You might be interested in
A glass lying on table doesn't possess friction.why?
Ratling [72]
Becsud it's not moving
7 0
3 years ago
A spherical capacitor contains a charge of 3.00 nC when connected to a potential difference of 230 V. If its plates are separate
Assoli18 [71]

Answer:

Part(a): the capacitance is 0.013 nF.

Part(b): the radius of the inner sphere is 3.1 cm.

Part(c): the electric field just outside the surface of inner sphere is \bf{2.81 \times 10^{4}~n~C^{-1}}.

Explanation:

We know that if 'a' and 'b' are the inner and outer radii of the shell respectively, 'Q' is the total charge contains by the capacitor subjected to a potential difference of 'V' and '\epsilon_{0}' be the permittivity of free space, then the capacitance (C) of the spherical shell can be written as

C = \dfrac{4 \pi \epsilon_{0}}{(\dfrac{1}{a} - \dfrac{1}{b})}~~~~~~~~~~~~~~~~~~~~~~~~~~~(1)

Part(a):

Given, charge contained by the capacitor Q = 3.00 nC and potential to which it is subjected to is V = 230V.

So the capacitance (C) of the shell is

C &=& \dfrac{Q}{V} = \dfrac{3 \times 10^{-90}~C}{230~V} = 1.3 \times 10^{-11}~F = 0.013~nF

Part(b):

Given the inner radius of the outer shell b = 4.3 cm = 0.043 m. Therefore, from equation (1), rearranging the terms,

&& \dfrac{1}{a} = \dfrac{1}{b} + \dfrac{1}{C/4 \pi \epsilon_{0}} = \dfrac{1}{0.043} + \dfrac{1}{1.3 \times 10^{-11} \times 9 \times 10^{9}} = 31.79\\&or,& a = \dfrac{1}{31.79}~m = 0.031~m = 3.1~cm

Part(c):

If we apply Gauss' law of electrostatics, then

&& E~4 \pi a^{2} = \dfrac{Q}{\epsilon_{0}}\\&or,& E = \dfrac{Q}{4 \pi \epsilon_{0}a^{2}}\\&or,& E = \dfrac{3 \times 10^{-9} \times 9 \times 10^{9}}{0.031^{2}}~N~C^{-1}\\&or,& E = 2.81 \times 10^{4}~N~C^{-1}

3 0
3 years ago
A flute player hears four beats per second when she compares her note to a 523 HzHz tuning fork (the note C). She can match the
laiz [17]

Answer:

527 Hz

Solution:

As per the question:

Beat frequency of the player, \Delta f = 4\ beats/s

Frequency of the tuning fork, f = 523 Hz

Now,

The initial frequency can be calculated as:

\Delta f = f - f_{i}

f_{i} = f \pm \Delta f

when

f_{i} = f + \Delta f = 523 + 4 = 527 Hz

when

f_{i} = f - \Delta f = 523 - 4 = 519 Hz

But we know that as the length of the flute increases the frequency decreases

Hence, the initial frequency must be 527 Hz

7 0
3 years ago
Read 2 more answers
How is most of the electricity we use at home generated?
Sveta_85 [38]
Nuclear power plants, wind farms, water farms, and geothermal heating
3 0
3 years ago
A 0.40 kg mass hangs on a spring with a spring constant of 12 N/m. The system oscillated with a constant amplitude of 12 cm. Wha
Vaselesa [24]

Answer:

The maximum acceleration of the system is 359.970 centimeters per square second.

Explanation:

The motion of the mass-spring system is represented by the following formula:

x(t) = A\cdot \cos (\omega \cdot t + \phi)

Where:

x(t) - Position of the mass with respect to the equilibrium position, measured in centimeters.

A - Amplitude of the mass-spring system, measured in centimeters.

\omega - Angular frequency, measured in radians per second.

t - Time, measured in seconds.

\phi - Phase, measured in radians.

The acceleration experimented by the mass is obtained by deriving the position equation twice:

a (t) = -\omega^{2}\cdot A \cdot \cos (\omega\cdot t + \phi)

Where the maximum acceleration of the system is represented by \omega^{2}\cdot A.

The natural frequency of the mass-spring system is:

\omega = \sqrt{\frac{k}{m} }

Where:

k - Spring constant, measured in newtons per meter.

m - Mass, measured in kilograms.

If k = 12\,\frac{N}{m} and m = 0.40\,kg, the natural frequency is:

\omega = \sqrt{\frac{12\,\frac{N}{m} }{0.40\,kg} }

\omega \approx 5.477\,\frac{rad}{s}

Lastly, the maximum acceleration of the system is:

a_{max} = \left(5.477\,\frac{rad}{s})^{2}\cdot (12\,cm)

a_{max} = 359.970\,\frac{cm}{s^{2}}

The maximum acceleration of the system is 359.970 centimeters per square second.

7 0
3 years ago
Other questions:
  • I need help on this please help me
    8·1 answer
  • Laminar flow, where water moves in approximately straight-line paths, characterizes ________.
    14·1 answer
  • What are electrons and how are they involved in creating and electric current?
    8·1 answer
  • During the summer months, why is the average temperature much higher in many regions of the globe?
    14·2 answers
  • Structures that trap light energy and perform photosynthesis
    13·1 answer
  • During a demonstration of the gravitational force on falling objects to her class, Sarah drops an 11 lb. bowling ball from the t
    6·2 answers
  • A rugby player runs with the ball directly toward his opponent's goal, along the positive direction of an x axis. He can legally
    10·1 answer
  • In each cycle, a heat engine an input of 1940 J of heat and exhausts 1480 J of heat. What is the thermal efficiency?
    11·1 answer
  • Voltage has been described as similar to the water in the water pipes in your home. What other analogy can you think of that is
    11·1 answer
  • ⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!