If the solution is treated as an ideal solution, the extent of freezing
point depression depends only on the solute concentration that can be
estimated by a simple linear relationship with the cryoscopic constant:
ΔTF = KF · m · i
ΔTF, the freezing point depression, is defined as TF (pure solvent) - TF
(solution).
KF, the cryoscopic constant, which is dependent on the properties of the
solvent, not the solute. Note: When conducting experiments, a higher KF
value makes it easier to observe larger drops in the freezing point.
For water, KF = 1.853 K·kg/mol.[1]
m is the molality (mol solute per kg of solvent)
i is the van 't Hoff factor (number of solute particles per mol, e.g. i =
2 for NaCl).
Answer:
1.21
Explanation:
Heat rise in the body happens due to heat supplied by water to the body.
Heat rise in body = m₁ c₁ ΔT₁
Where m₁ is mass of body and c₁ is its specific heat of body
Heat lost from water to the body = m₂ c₂ ΔT₂
Where m₂ is mass of water and c₂ is its specific heat of water ( c₂ =1 (since water))
Equating both:
15.3 x c₁ x 4.3 = 80.2 x 1 x 4.3
⇒ c₁ = 80.2 / (15.3 x 4.3) = 1.21
Answer:
(a) T= 38.4 N
(b) m= 26.67 kg
Explanation:
We apply Newton's second law:
∑F = m*a (Formula 1)
∑F : algebraic sum of the forces in Newton (N)
m : mass in kilograms (kg)
a : acceleration in meters over second square (m/s²)
Kinematics
d= v₀t+ (1/2)*a*t² (Formula 2)
d:displacement in meters (m)
t : time in seconds (s)
v₀: initial speed in m/s
vf: final speed in m/s
a: acceleration in m/s²
v₀=0, d=18 m , t=5 s
We apply the formula 2 to calculate the accelerations of the blocks:
d= v₀t+ (1/2)*a*t²
18= 0+ (1/2)*a*(5)²
a= (2*18) / ( 25) = 1.44 m/s²
to the right
We apply Newton's second law to the block A
∑Fx = m*ax
60-T = 15*1.44
60 - 15*1.44 = T
T = 38.4 N
We apply Newton's second law to the block B
∑Fx = m*ax
T = m*ax
38.4 = m*1.44
m= (38.4) / (1.44)
m = 26.67 kg
Answer:
B)a tool to drop temperatures, mercury, an electric current, and a tool to measure resistance