<span>H(t) = -16t^2 + vt + s
</span><span>Part A:
</span>Using the given data:
H(t)= -16*t² + 60*t + 82;
Part B:
Put H(t)=0
0<span>= -16*t² + 60*t + 82;</span>
Use the quadratic formula to find t.
See the attachment...'t' is replaced with 'x'.
Answer:
a) n = 9.9 b) E₁₀ = 19.25 eV
Explanation:
Solving the Scrodinger equation for the electronegative box we get
Eₙ = (h² / 8m L²2) n²
where l is the distance L = 1.40 nm = 1.40 10⁻⁹ m and n the quantum number
In this case En = 19 eV let us reduce to the SI system
En = 19 eV (1.6 10⁻¹⁹ J / 1 eV) = 30.4 10⁻¹⁹ J
n = √ (In 8 m L² / h²)
let's calculate
n = √ (8 9.1 10⁻³¹ (1.4 10⁻⁹)² 30.4 10⁻¹⁹ / (6.63 10⁻³⁴)²
n = √ (98) n = 9.9
since n must be an integer, we approximate them to 10
b) We substitute for the calculation of energy
In = (h² / 8mL2² n²
In = (6.63 10⁻³⁴) 2 / (8 9.1 10⁻³¹ (1.4 10⁻⁹)² 10²
E₁₀ = 3.08 10⁻¹⁸ J
we reduce eV
E₁₀ = 3.08 10⁻¹⁸ j (1ev / 1.6 10⁻¹⁹J)
E₁₀ = 1.925 101 eV
E₁₀ = 19.25 eV
the result with significant figures is
E₁₀ = 19.25 eV
Answer:
166 666 666.7 years
Explanation:
We start the question by making the units uniform. We are told that the continents move at 3 cm/year = 0.03 m/year.
We are also told that the continents are now 5000 km = 5 000 000 m apart
So to calculate the time it took for them to be this far apart
t = distance/speed
t = 5 000 000 m/(0.03 m/year) = 166 666 666.7 years
The answer is D. Products are formed from reactants by the breaking and forming of new bonds.
Answer:
The change in potential energy and kinetic energy are 980 MJ and 148.3 MJ.
Explanation:
Given that,
Mass of aircraft = 10000 kg
Speed = 620 km/h = 172.22 m/s
Altitude = 10 km = 1000 m
We calculate the change in potential energy
For g = 10 m/s²,
The change in potential energy will be 1000 MJ.
We calculate the change in kinetic energy
For g = 10 m/s²,
The change in kinetic energy will be 150 MJ.
Hence, The change in potential energy and kinetic energy are 980 MJ and 148.3 MJ.