Atoms ere electrically neutral because they have equal number of protons and electrons. If an atom lose or gain one or more electrons it becomes an ion.
Gravity decreases with the square of the distance, so the new force is (20)/(2*2) = 5N.
consider the motion of projectile A in vertical direction :
v₀ = initial velocity of projectile A in vertical direction = 0 m/s (since the projectile was launched horizontally)
a = acceleration of the projectile = g = acceleration due to gravity = 9.8 m/s²
t = time of travel for projectile A = 3.0 seconds
Y = vertical displacement of projectile A = height of the cliff = h = ?
using the kinematics equation along the vertical direction as
Y = v₀ t + (0.5) a t²
h = (0) (3.0) + (0.5) (9.8) (3.0)²
h = 44.1 m
For this problem, we use the derived equations for rectilinear motion at constant acceleration. The equations used for this problem are:
a = (v - v₀)/t
2ax = v² - v₀²
where
a is the acceleration
x is the distance
v is the final velocity
v₀ is the initial velocity
t is the time
The solution is as follows;
a = (60mph - 30 mph)/(3 s * 1 h/3600 s)
a = 36,000 mph²
2(36,000 mph²)(x) = 60² - 30²
Solving for x,
x = 0.0375 miles
Answer:
<h2>C. <u>
0.55 m/s towards the right</u></h2>
Explanation:
Using the conservation of law of momentum which states that the sum of momentum of bodies before collision is equal to the sum of the bodies after collision.
Momentum = Mass (M) * Velocity(V)
BEFORE COLLISION
Momentum of 0.25kg body moving at 1.0m/s = 0.25*1 = 0.25kgm/s
Momentum of 0.15kg body moving at 0.0m/s(body at rest) = 0kgm/s
AFTER COLLISION
Momentum of 0.25kg body moving at x m/s = 0.25* x= 0.25x kgm/s
<u>x is the final velocity of the 0.25kg ball</u>
Momentum of 0.15kg body moving at 0.75m/s(body at rest) =
0.15 * 0.75kgm/s = 0.1125 kgm/s
Using the law of conservation of momentum;
0.25+0 = 0.25x + 0.1125
0.25x = 0.25-0.1125
0.25x = 0.1375
x = 0.1375/0.25
x = 0.55m/s
Since the 0.15 kg ball moves off to the right after collision, the 0.25 kg ball will move at <u>0.55 m/s towards the right</u>
<u></u>