1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
andrey2020 [161]
2 years ago
7

In the following calculations, be sure to express the answer in standard scientific notation with the appropriate number of

Physics
1 answer:
Ratling [72]2 years ago
4 0

Answer:

-45,597.07

Explanation:

if not in scientific calculator and yung answer nung sa scientific sa comment na lang dinadownload ko ka eh

You might be interested in
A quantum system has three states, with energies 0, 1.6 × 10-21, and 1.6 × 10-21, in Joules. It is coupled to an environment wit
xenn [34]

To develop the problem it is necessary to apply two concepts, the first is related to the calculation of average data and the second is the Boltzmann distribution.

Boltzmann distribution is a probability distribution or probability measure that gives the probability that a system will be in a certain state as a function of that state's energy and the temperature of the system. It is given by

z = \sum\limit_i e^{-\frac{\epsilon_i}{K_0T}}

Where,

\epsilon_i = energy of that state

k = Boltzmann's constant

T = Temperature

With our values we have that

T= 250K

k = 1.381*10^{23} m^2 kg s^{-2} K^{-1}

\epsilon_1=0J

\epsilon_2=1.6*10^{-21}J

\epsilon_3=1.6*10^{-21}J

To make the calculations easier we can assume that the temperature and Boltzmann constant can be summarized as

\beta = \frac{1}{kT}

\beta = \frac{1}{(1.381*10^{23} m^2)(250)}

\beta = 2.9*10^{20}J

Therefore the average energy would be,

\bar{\epsilon} =\frac{\sum \epsilon_i e^{-\beta \epsilon_i}}{\sum e^{-\beta \epsilon_i}}

Replacing with our values we have

\bar{\epsilon} = \frac{0e^{-0}+1.6*10^{-21}*e^{-\Beta(1.6*10^{-21})}+1.6*10^{-2-1}*e^{-(2.9*10^{20})(1.6*10^{-21})}}{1+2e^{-2.9*10^{20}*1.6*10^{-21}}}

\bar{\epsilon} = 0.9*10^{-22}J

Therefore the average internal energy is \bar{\epsilon} = 0.9*10^{-22}J

3 0
3 years ago
What is the net work doneon the object over the distance shown?
GuDViN [60]

A)F_0d

Explanation

If you graph the force on an object as a function of the position of that object, then the area under the curve will equal the work done on that object, so we need to find the area under the function to find the work

Step 1

find the area under the function.

so

Area:

\text{Area}=rec\tan gle_{green}+triangle_{gren}-triangle_{red}\begin{gathered} \text{the area of a rectangle is given by} \\ A_{rec}=lenght\cdot widht \\ \text{and} \\ \text{the area of a triangle is given by:} \\ A_{tr}=\frac{base\cdot height}{2} \end{gathered}

so

\begin{gathered} \text{Area}=rec\tan gle_{green}+triangle_{gren}-triangle_{red} \\ \text{replace} \\ \text{Area}=(F_0\cdot d)+\frac{(F_0\cdot d)}{2}-\frac{(F_0\cdot d)}{2} \\ \text{Area}=(F_0\cdot d) \\ Area=F_0d \end{gathered}

therefore, the answer is

A)F_0d

I hope this helps you

4 0
11 months ago
^^ help :c
ipn [44]
I need help to I have a test and I need help to
6 0
3 years ago
Master of physics needed
Delicious77 [7]
Hey JayDilla, I get 1/3.  Here's how:
Kinetic energy due to linear motion is:
E_{linear}= \frac{1}{2}mv^2
where
v=r \omega
giving
E_{linear}= \frac{1}{2}mr^2 \omega ^2

The rotational part requires the moment of inertia of a solid cylinder
I_{cyl} =  \frac{1}{2}mr^2
Then the rotational kinetic energy is
E_{rot}= \frac{1}{2}I \omega ^2= \frac{1}{4}mr^2 \omega ^2
Adding the two types of energy and factoring out common terms gives
\frac{1}{2}mr^2 \omega ^2(1+ \frac{1}{2})
Here the "1" in the parenthesis is due to linear motion and the "1/2" is due to the rotational part.  Since this gives a total of 3/2 altogether, and the rotational part is due to a third of this (1/2), I say it's 1/3.

8 0
3 years ago
A ball that has a mass of 0.25 kg spins in a circle at the end of a 1.6 m rope. the ball moves at a tangential speed of 12.2 m/s
NARA [144]

The centripetal force acting on the ball will be 23.26 N.The direction of the centripetal force is always in the path of the center of the course.

<h3>What is centripetal force?</h3>

The force needed to move a body in a curved way is understood as centripetal force. This is a force that can be sensed from both the fixed frame and the spinning body's frame of concern.

The given data in the problem is;

m is the mass of A ball = 0.25 kg

r is the radius of circle= 1.6 m rope

v is the tangential speed = 12.2 m/s

\rm F_C is the centripetal force acting on the ball

The centripetal force is found as;

\rm F_C = \frac{mv^2}{r}  \\\\ F_C = \frac{0.25 \times (12.2)^2}{1.6}  \\\\ F_C=23.26\ N

Hence the centripetal force acting on the ball will be 23.26 N.

To learn more about the centripetal force refer to the link;

brainly.com/question/10596517

4 0
2 years ago
Other questions:
  • a 95.00 kg man on ice skates catches a moving ball at 18 m/s. the man is initially at rest. the man and ball move together after
    13·1 answer
  • Displacement vector of 4 km north, 2 km south, 5 km north, and 5km south combine to a total displacement of ? A 2 km South b 16
    15·1 answer
  • The speed of a projectile when it reaches its maximum height is 0.58 times its speed when it is at half its maximum height. What
    9·1 answer
  • Wire A has the same length and twice the radius of wire B. Both wires are made of the same material and carry the same current.
    8·1 answer
  • I NEED THIS ASAP
    5·1 answer
  • How do the orbits of the planets farthest from the sun compare to the orbits of the planets closest to the sun?
    5·1 answer
  • The amount of kinetic energy a moving object has depand on its
    13·2 answers
  • In both ionic and molecular bonds, the resulting compound is stabilized because
    10·1 answer
  • What has a higher eccentricity - a planet or a comet?
    10·1 answer
  • How do mass and distance affect the gravitational force between two objects?
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!