1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Gelneren [198K]
3 years ago
12

Air enters a nozzle steadily at 2.21 kg/m3 and 20 m/s and leaves at 0.762 kg/m3 and 150 m/s. If the inlet area of the nozzle is

60 cm2, determine (a) the mass flow rate through the nozzle, and (b) the exit area of the nozzle
Physics
2 answers:
zalisa [80]3 years ago
8 0

a) Mass flow rate through the nozzle: 0.265 kilograms per second, b) Exit area of the nozzle: 23.202 square centimeters.

We determine the Mass Flow Rate through the nozzle and the Exit Area of the nozzle by means of the Principle of Mass Conservation. A nozzle is a device that works at Steady State, so that Mass Balance can be reduced into this form:

\dot m_{in} = \dot m_{out} (1)

Where:

\dot m_{in} - Inlet mass flow, in kilograms per second.

\dot m_{out} - Outlet mass flow, in kilograms per second.

Given that air flows at constant rate, we expand (1) by dimensional analysis:

\rho_{in} \cdot A_{in}\cdot v_{in} = \rho_{out}\cdot A_{out}\cdot v_{out} (2)

Where:

\rho_{in}, \rho_{out} - Air density at inlet and outlet, in kilograms per cubic meter.

A_{in}, A_{out} - Inlet and outlet area, in square meters.

v_{in}, v_{out} - Inlet and outlet velocity, in meters per second.

a) If we know that \rho_{in} = 2.21\,\frac{kg}{m^{3}}, A_{in} = 60\times 10^{-4}\,m^{2} and v_{in} = 20\,\frac{m}{s}, then the mass flow rate through the nozzle is:

\dot m = \rho_{in}\cdot A_{in}\cdot v_{in}

\dot m = \left(2.21\,\frac{kg}{m^{3}} \right)\cdot (60\times 10^{-4}\,m^{2})\cdot \left(20\,\frac{m}{s} \right)

\dot m = 0.265\,\frac{kg}{s}

The mass flow rate through the nozzle is 0.265 kilograms per second.

b) If we know that \rho_{in} = 2.21\,\frac{kg}{m^{3}}, A_{in} = 60\times 10^{-4}\,m^{2}, v_{in} = 20\,\frac{m}{s}, \rho_{out} = 0.762\,\frac{kg}{m^{3}} and v_{out} = 150\,\frac{m}{s}, then the exit area of the nozzle is:

\rho_{in} \cdot A_{in}\cdot v_{in} = \rho_{out}\cdot A_{out}\cdot v_{out}

A_{out} = \frac{\rho_{in}\cdot A_{in}\cdot v_{in}}{\rho_{out}\cdot v_{out}}

A_{out} = \frac{\left(2.21\,\frac{kg}{m^{3}} \right)\cdot (60\times 10^{-4}\,m^{2})\cdot \left(20\,\frac{m}{s} \right)}{\left(0.762\,\frac{kg}{m^{3}} \right)\cdot \left(150\,\frac{m}{s} \right)}

A_{out} = 2.320\times 10^{-3}\,m^{2}

A_{out} = 23.202\,cm^{2}

The exit area of the nozzle is 23.202 square centimeters.

saveliy_v [14]3 years ago
5 0

Answer:

a) The mass flow rate through the nozzle is 0.27 kg/s.

b) The exit area of the nozzle is 23.6 cm².

Explanation:

a) The mass flow rate through the nozzle can be calculated with the following equation:

\dot{m_{i}} = \rho_{i} v_{i}A_{i}

Where:

v_{i}: is the initial velocity = 20 m/s

A_{i}: is the inlet area of the nozzle = 60 cm²  

\rho_{i}: is the density of entrance = 2.21 kg/m³

\dot{m} = \rho_{i} v_{i}A_{i} = 2.21 \frac{kg}{m^{3}}*20 \frac{m}{s}*60 cm^{2}*\frac{1 m^{2}}{(100 cm)^{2}} = 0.27 kg/s  

Hence, the mass flow rate through the nozzle is 0.27 kg/s.

b) The exit area of the nozzle can be found with the Continuity equation:

\rho_{i} v_{i}A_{i} = \rho_{f} v_{f}A_{f}

0.27 kg/s = 0.762 kg/m^{3}*150 m/s*A_{f}

A_{f} = \frac{0.27 kg/s}{0.762 kg/m^{3}*150 m/s} = 0.00236 m^{2}*\frac{(100 cm)^{2}}{1 m^{2}} = 23.6 cm^{2}

Therefore, the exit area of the nozzle is 23.6 cm².

I hope it helps you!                                                                  

You might be interested in
Approximately how far is the sun from the center of the milky way galaxy?
enot [183]
The sun is approximately 27,000 light years away from the center of our galaxy.
8 0
3 years ago
Read 2 more answers
A 15.0 cm object is 12.0 cm from a convex mirror that has a focal length of -6.0 cm. What is the height of the image produced by
laila [671]
The answer is -7.5cm
4 0
3 years ago
Read 2 more answers
Describe how can two or more velocities be combined
eduard
Two or more velocities add by vector addition
4 0
3 years ago
The movement of electricity is called?
stira [4]
It's commonly referred to as an electric current.
5 0
4 years ago
What is an odometer?
ra1l [238]

Answer:

It is a instrument used to measure the distance traveled by a vehicle.

Explanation:

This is what it looks like ↓

6 0
3 years ago
Read 2 more answers
Other questions:
  • A proton is moving at 105 m/s at a point where the potential is 10 V. Later, it is at a place where the potential is 5 V. What i
    13·1 answer
  • What is Ohm's Law, and how does it work in real life.
    11·1 answer
  • In the visible spectra of stars, absorption lines of hydrogen are produced when atoms are excited from n = 2 to higher levels (t
    5·1 answer
  • Which of the following is not used when prediciting volcanic erruptions
    7·1 answer
  • If you were on the open ocean on a large ship, what steps would you do to determine the height of a wave?
    14·1 answer
  • In an electric motor, the rotating coil of wires wrapped around an iron core is a(n)
    14·1 answer
  • An alert physics student stands beside the tracks as a train rolls slowly past. He notes that the frequency of the train whistle
    13·1 answer
  • At what angle does the beam of light fall into the mirror if the beam is reflected
    5·1 answer
  • Se deja caer una caja de madera de 4.5kg de masa desde una altura de 2.25metros .
    10·1 answer
  • You have two beakers of different types of oil, which have different specific heat capacities. You put each beaker in a water ba
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!