1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Gelneren [198K]
3 years ago
12

Air enters a nozzle steadily at 2.21 kg/m3 and 20 m/s and leaves at 0.762 kg/m3 and 150 m/s. If the inlet area of the nozzle is

60 cm2, determine (a) the mass flow rate through the nozzle, and (b) the exit area of the nozzle
Physics
2 answers:
zalisa [80]3 years ago
8 0

a) Mass flow rate through the nozzle: 0.265 kilograms per second, b) Exit area of the nozzle: 23.202 square centimeters.

We determine the Mass Flow Rate through the nozzle and the Exit Area of the nozzle by means of the Principle of Mass Conservation. A nozzle is a device that works at Steady State, so that Mass Balance can be reduced into this form:

\dot m_{in} = \dot m_{out} (1)

Where:

\dot m_{in} - Inlet mass flow, in kilograms per second.

\dot m_{out} - Outlet mass flow, in kilograms per second.

Given that air flows at constant rate, we expand (1) by dimensional analysis:

\rho_{in} \cdot A_{in}\cdot v_{in} = \rho_{out}\cdot A_{out}\cdot v_{out} (2)

Where:

\rho_{in}, \rho_{out} - Air density at inlet and outlet, in kilograms per cubic meter.

A_{in}, A_{out} - Inlet and outlet area, in square meters.

v_{in}, v_{out} - Inlet and outlet velocity, in meters per second.

a) If we know that \rho_{in} = 2.21\,\frac{kg}{m^{3}}, A_{in} = 60\times 10^{-4}\,m^{2} and v_{in} = 20\,\frac{m}{s}, then the mass flow rate through the nozzle is:

\dot m = \rho_{in}\cdot A_{in}\cdot v_{in}

\dot m = \left(2.21\,\frac{kg}{m^{3}} \right)\cdot (60\times 10^{-4}\,m^{2})\cdot \left(20\,\frac{m}{s} \right)

\dot m = 0.265\,\frac{kg}{s}

The mass flow rate through the nozzle is 0.265 kilograms per second.

b) If we know that \rho_{in} = 2.21\,\frac{kg}{m^{3}}, A_{in} = 60\times 10^{-4}\,m^{2}, v_{in} = 20\,\frac{m}{s}, \rho_{out} = 0.762\,\frac{kg}{m^{3}} and v_{out} = 150\,\frac{m}{s}, then the exit area of the nozzle is:

\rho_{in} \cdot A_{in}\cdot v_{in} = \rho_{out}\cdot A_{out}\cdot v_{out}

A_{out} = \frac{\rho_{in}\cdot A_{in}\cdot v_{in}}{\rho_{out}\cdot v_{out}}

A_{out} = \frac{\left(2.21\,\frac{kg}{m^{3}} \right)\cdot (60\times 10^{-4}\,m^{2})\cdot \left(20\,\frac{m}{s} \right)}{\left(0.762\,\frac{kg}{m^{3}} \right)\cdot \left(150\,\frac{m}{s} \right)}

A_{out} = 2.320\times 10^{-3}\,m^{2}

A_{out} = 23.202\,cm^{2}

The exit area of the nozzle is 23.202 square centimeters.

saveliy_v [14]3 years ago
5 0

Answer:

a) The mass flow rate through the nozzle is 0.27 kg/s.

b) The exit area of the nozzle is 23.6 cm².

Explanation:

a) The mass flow rate through the nozzle can be calculated with the following equation:

\dot{m_{i}} = \rho_{i} v_{i}A_{i}

Where:

v_{i}: is the initial velocity = 20 m/s

A_{i}: is the inlet area of the nozzle = 60 cm²  

\rho_{i}: is the density of entrance = 2.21 kg/m³

\dot{m} = \rho_{i} v_{i}A_{i} = 2.21 \frac{kg}{m^{3}}*20 \frac{m}{s}*60 cm^{2}*\frac{1 m^{2}}{(100 cm)^{2}} = 0.27 kg/s  

Hence, the mass flow rate through the nozzle is 0.27 kg/s.

b) The exit area of the nozzle can be found with the Continuity equation:

\rho_{i} v_{i}A_{i} = \rho_{f} v_{f}A_{f}

0.27 kg/s = 0.762 kg/m^{3}*150 m/s*A_{f}

A_{f} = \frac{0.27 kg/s}{0.762 kg/m^{3}*150 m/s} = 0.00236 m^{2}*\frac{(100 cm)^{2}}{1 m^{2}} = 23.6 cm^{2}

Therefore, the exit area of the nozzle is 23.6 cm².

I hope it helps you!                                                                  

You might be interested in
The lowest possible temperature in outer space is 3.13 K. What is the rms speed of hydrogen molecules at this temperature? (The
Umnica [9.8K]

Answer:

v_{rms} =196.59 m/s

Given:

Temperature, T = 3.13 K

molar mass of molecular hydrogen, m = 2.02 g/mol = 2.02\times 10^{-3}kg/mol

Solution:

To calculate the root mean squarer or rms speed of hydrogen molecule, we use the given formula:

v_{rms} = \sqrt{\frac{3TR}{m}}

where

R = rydberg's constant = 8.314 J/mol-K

Putting the values in the above formula:

v_{rms} = \sqrt{\frac{3\times 3.13\times 8.314}{2.02\times 10^{-3}}}

v_{rms} =196.59 m/s

5 0
3 years ago
How come that there is a presence of cos there?
liubo4ka [24]

Answer:

Can i have more context

Explanation:

8 0
3 years ago
Relationship between oceanography and cryosphere
rosijanka [135]
<span>Oceanography is the study of the ocean and the cryosphere are the portions of the earth that are just frozen water (ice). When fresh water glaciers melt, they lower the salt levels in the ocean and and oceanographer studies that and makes sure that it wont have too much of an effect. The cryosphere plays a significant role in the global climate. </span>
3 0
3 years ago
Students are asked to create roller coasters for marbles. Their goal is to design a coaster with the tallest possible hill that
ivann1987 [24]

Answer:

Kinetic Energy.

Explanation:

The movement of a roller coaster is accomplished by the conversion of potential energy to kinetic energy. The roller coaster cars gain potential energy as they are pulled to the top of the first hill. As the cars descend the potential energy is converted to kinetic energy.

3 0
2 years ago
The mass of the bicycle and rider is 60 kg and the total area of the tyres in contact with
AleksAgata [21]

Answer:

a little

Explanation:

First of all, it's not how you spell "tyres", it is tires.

Second of all, you already know the Mass so what you need to find out now is  contact the road. You Know that your number and letter are squared so that would turn into 6m x 2.4. Then you do the math do continue on to finish it. Have a great day!! Good luck with the answer!!

3 0
3 years ago
Other questions:
  • Which side of continents have a colder climate than might be expected?
    9·2 answers
  • The former soviet union launched the first artificial earth satellite. What is the name of this satelitte?
    8·1 answer
  • Se ha quemado magnesio (reacción con el oxígeno) y se obtuvieron 12g de óxido de magnesio (II). ¿Cuánto magnesio se quemó? ¿Qué
    15·1 answer
  • A 2,200 kg car moving at 18 m/s hits a barrier and comes to a stop. How much work is done to bring the car to a stop?3.6 x 105J3
    11·1 answer
  • If you were an Astronaut in the middle of the near side of the moon during a full moon, how would the ground around you look? Ho
    8·1 answer
  • Hi there hope your having a great day!! my questions both are SCIENCE laws of motion related fyi
    5·1 answer
  • If the distance between two charged particles is doubled, the force between them changes by a factor of
    12·1 answer
  • First use of electricity<br> Greece<br> Itally<br> Allentwon<br> California
    11·1 answer
  • Please help will be marked most brainlist !!!
    8·1 answer
  • In Bolt’s fastest 100 meter, he accelerated from the starting block to a speed of 27.8 mi/hr in 9.58 s. What was his acceleratio
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!