Answer:
Phosphorous
Explanation:
it is the fifth element from the left and it is in the third period so it has 5 valence electrons
Answer:
Magnification= -image distance/object distance
.253=image distance/33.5
image distance= 8.48 cm
(c) is the correct choice.
El Nino (a), Earth's orbit (b), and solar energy output (d) are all "natural" occurrences. You can't do a thing aboutum.
Fossil fuels ... or, more precisely, humanity's use of vast quantities of fossil fuels as a convenient source of huge quantities of energy ... and the subsequent increase of Carbon Dioxide in the planet's atmosphere, is not the result of "natural" processes. It's the result of human efforts to <em>alter and control</em> Nature, through <em>artificial</em> processes.
A) The answer is 11.53 m/s
The final kinetic energy (KEf) is the sum of initial kinetic energy (KEi) and initial potential energy (PEi).
KEf = KEi + PEi
Kinetic energy depends on mass (m) and velocity (v)
KEf = 1/2 m * vf²
KEi = 1/2 m * vi²
Potential energy depends on mass (m), acceleration (a), and height (h):
PEi = m * a * h
So:
KEf = KEi + <span>PEi
</span>1/2 m * vf² = 1/2 m * vi² + m * a * h
..
Divide all sides by m:
1/2 vf² = 1/2 vi² + a * h
We know:
vi = 9.87 m/s
a = 9.8 m/s²
h = 1.81 m
1/2 vf² = 1/2 * 9.87² + 9.8 * 1.81
1/2 vf² = 48.71 + 17.74
1/2 vf² = 66.45
vf² = 66.45 * 2
vf² = 132.9
vf = √132.9
vf = 11.53 m/s
b) The answer is 6.78 m
The kinetic energy at the bottom (KE) is equal to the potential energy at the highest point (PE)
KE = PE
Kinetic energy depends on mass (m) and velocity (v)
KE = 1/2 m * v²
Potential energy depends on mass (m), acceleration (a), and height (h):
PE = m * a * h
KE = PE
1/2 m * v² = m * a * h
Divide both sides by m:
1/2 * v² = a * h
v = 11.53 m/s
a = 9.8 m/s²
h = ?
1/2 * 11.53² = 9.8 * h
1/2 * 132.94 = 9.8 * h
66.47 = 9.8 * h
h = 66.47 / 9.8
h = 6.78 m
Answer:
4 x 10⁻⁴ J
Explanation:
C = 5000 pF, V = 400 V
Energy = CV²/2 = 5000 x 10⁻¹² x 400²/2 = 4 x 10⁻⁴ J