Answer:
Explanation:
If an elements atomic mass and number are known you can also determine the number of protons and neutrons it has. You can also determine where it is on the periodic table. For example, if a element had a atomic mass of 10 then it would be higher up on the table then one with a mass of 20. Btw I do apex too.
Answer:
(a) Length =136.58 m
(b) T=5995 N
Explanation:
for the glider in the back
T - 1900 = 700 a
for the glider in front
12000-T -1900 = 700a
add equations
12000-3800 = 1400 a
a=5.85 m/s^2
v^2 = v0^2 + 2 a x
40^2 = 2*5.85*x
Length =136.58 m
b) plug the a back into one of the previous formula
T - 1900 = 700*5.85
T=5995 N
Answer:
B) I1 = 1680 kg.m^2 I2 = 1120 kg.m^2
C) V = 0.84m/s T = 29.92s
D) ω2 = 0.315 rad/s
Explanation:
The moment of inertia when they are standing on the edge:
where M is the mass of the merry-go-round.
I1 = 1680 kg.m^2
The moment of inertia when they are standing half way to the center:

I2 = 1120 kg.m^2
The tangencial velocity is given by:
V = ω1*R = 0.84m/s
Period of rotation:
T = 2π / ω1 = 29.92s
Assuming that there is no friction and their parents are not pushing anymore, we can use conservation of the angular momentum to calculate the new angular velocity:
I1*ω1 = I2*ω2 Solving for ω2:
ω2 = I1*ω1 / I2 = 0.315 rad/s
2.B
4.C
3.D
1.C
5.C
Theses are the right answer
Answer:
2870 N
Explanation:
There are three forces on the mattress. Weight of the mattress, weight of the person, and buoyancy.
∑F = ma
B - mg - Mg = 0
Buoyancy is equal to the weight of the displaced fluid.
ρVg - mg - Mg = 0
ρV - m = M
Plugging in values:
M = (1000 kg/m³) (0.75 m × 2.25 m × 0.175 m) - 2 kg
M = 293 kg
The person's weight is therefore:
Mg = 293 kg × 9.8 m/s²
Mg = 2870 N